Zobrazit minimální záznam
dc.contributor.author
Specia, Lucia
dc.date.accessioned
2017-09-18T16:47:30Z
dc.date.available
2017-09-18T16:47:30Z
dc.date.issued
2017-09-18
dc.identifier.uri
http://hdl.handle.net/11372/LRT-2390
dc.description
Post-editing and MQM annotations produced by the QT21 project. As described in
@InProceedings{specia-etal_MTSummit:2017,
author = {Specia, Lucia and Kim Harris and Frédéric Blain and Aljoscha Burchardt and Viviven Macketanz and Inguna Skadiņa and Matteo Negri and and Marco Turchi},
title = {Translation Quality and Productivity: A Study on Rich Morphology Languages},
booktitle = {Proceedings of Machine Translation Summit XVI},
year = {2017},
pages = {55--71},
address = {Nagoya, Japan},
}
dc.language.iso
eng
dc.language.iso
deu
dc.language.iso
ces
dc.language.iso
lav
dc.publisher
QT21 project
dc.relation
info:eu-repo/grantAgreement/EC/H2020/645452
dc.rights
AGREEMENT ON THE USE OF DATA IN QT21
dc.rights.uri
https://lindat.mff.cuni.cz/repository/xmlui/page/licence-TAUS_QT21
dc.subject
machine translation
dc.subject
post-editing
dc.subject
error annotation
dc.subject
mqm
dc.title
QT21 Data
dc.type
corpus
metashare.ResourceInfo#ContentInfo.mediaType
text
dc.rights.label
PUB
has.files
yes
branding
LRT + Open Submissions
contact.person
Lucia Specia l.specia@sheffield.ac.uk University of Sheffield
sponsor
European Union H2020-ICT-2014-1-645452 QT21: Quality Translation 21 euFunds info:eu-repo/grantAgreement/EC/H2020/645452
files.size
26019030
files.count
2
Soubory tohoto záznamu
Stáhnout všechny soubory záznamu (24.81
MB)
×
Large Size
The requested files are being packed into one large file. This process can take some time, please be patient.
Continue
Cancel
Licenční kategorie:
Publicly Available
Licence:
AGREEMENT ON THE USE OF DATA IN QT21
Název
QT21_pe-data.zip
Velikost
20.73
MB
Formát
application/zip
Popis
MT Summit 2017 paper post-editing data
MD5
5157e1d65031b490d29c1663b5002eb8
Stáhnout soubor
Název
QT21_mqm-data.zip
Velikost
4.08
MB
Formát
application/zip
Popis
MT Summit 2017 paper MQM data
MD5
8354ef4ab7141ff07e32c7b7d280792d
Stáhnout soubor
Zobrazit minimální záznam