dc.contributor.author |
Rosa, Rudolf |
dc.contributor.author |
Zeman, Daniel |
dc.contributor.author |
Mareček, David |
dc.contributor.author |
Žabokrtský, Zdeněk |
dc.date.accessioned |
2017-04-06T14:33:14Z |
dc.date.available |
2017-04-06T14:33:14Z |
dc.date.issued |
2017-01-28 |
dc.identifier.uri |
http://hdl.handle.net/11234/1-1970 |
dc.description |
Tools and scripts used to create the cross-lingual parsing models submitted to VarDial 2017 shared task (https://bitbucket.org/hy-crossNLP/vardial2017), as described in the linked paper. The trained UDPipe models themselves are published in a separate submission (https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1971).
For each source (SS, e.g. sl) and target (TT, e.g. hr) language,
you need to add the following into this directory:
- treebanks (Universal Dependencies v1.4):
SS-ud-train.conllu
TT-ud-predPoS-dev.conllu
- parallel data (OpenSubtitles from Opus):
OpenSubtitles2016.SS-TT.SS
OpenSubtitles2016.SS-TT.TT
!!! If they are originally called ...TT-SS... instead of ...SS-TT...,
you need to symlink them (or move, or copy) !!!
- target tagging model
TT.tagger.udpipe
All of these can be obtained from https://bitbucket.org/hy-crossNLP/vardial2017
You also need to have:
- Bash
- Perl 5
- Python 3
- word2vec (https://code.google.com/archive/p/word2vec/); we used rev 41 from 15th Sep 2014
- udpipe (https://github.com/ufal/udpipe); we used commit 3e65d69 from 3rd Jan 2017
- Treex (https://github.com/ufal/treex); we used commit d27ee8a from 21st Dec 2016
The most basic setup is the sl-hr one (train_sl-hr.sh):
- normalization of deprels
- 1:1 word-alignment of parallel data with Monolingual Greedy Aligner
- simple word-by-word translation of source treebank
- pre-training of target word embeddings
- simplification of morpho feats (use only Case)
- and finally, training and evaluating the parser
Both da+sv-no (train_ds-no.sh) and cs-sk (train_cs-sk.sh) add some cross-tagging, which seems to be useful only in
specific cases (see paper for details).
Moreover, cs-sk also adds more morpho features, selecting those that
seem to be very often shared in parallel data.
The whole pipeline takes tens of hours to run, and uses several GB of RAM, so make sure to use a powerful computer. |
dc.language.iso |
ces |
dc.language.iso |
slk |
dc.language.iso |
slv |
dc.language.iso |
hrv |
dc.language.iso |
dan |
dc.language.iso |
swe |
dc.language.iso |
nor |
dc.publisher |
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics (UFAL) |
dc.relation |
info:eu-repo/grantAgreement/EC/H2020/644402 |
dc.relation.isreferencedby |
http://web.science.mq.edu.au/~smalmasi/vardial4/pdf/VarDial26.pdf |
dc.rights |
GNU General Public License 2 or later (GPL-2.0) |
dc.rights.uri |
http://opensource.org/licenses/GPL-2.0 |
dc.subject |
parsing |
dc.subject |
dependency parser |
dc.subject |
universal dependencies |
dc.subject |
cross-lingual parsing |
dc.title |
Slavic Forest, Norwegian Wood (scripts) |
dc.type |
toolService |
metashare.ResourceInfo#ResourceComponentType#ToolServiceInfo.languageDependent |
true |
metashare.ResourceInfo#ContentInfo.detailedType |
suiteOfTools |
dc.rights.label |
PUB |
has.files |
yes |
branding |
LINDAT / CLARIAH-CZ |
contact.person |
Rudolf Rosa rosa@ufal.mff.cuni.cz Charles University, UFAL |
sponsor |
European Union EC/H2020/644402 HimL - Health in my Language euFunds info:eu-repo/grantAgreement/EC/H2020/644402 |
sponsor |
Ministerstvo školství, mládeže a tělovýchovy České republiky LM2015071 LINDAT/CLARIN: Institut pro analýzu, zpracování a distribuci lingvistických dat nationalFunds |
sponsor |
Grantová agentura Univerzity Karlovy v Praze GAUK 15723/2014 Modelování závislostní syntaxe napříč jazyky nationalFunds |
sponsor |
Univerzita Karlova (mimo GAUK) SVV 260 333 Specifický vysokoškolský výzkum nationalFunds |
sponsor |
Grantová agentura České republiky 15-10472S Morphologically and Syntactically Annotated Corpora of Many Languages nationalFunds |
files.size |
24254 |
files.count |
11 |