Nevus lipomatosus superficialis is a rare hamartomatous malformation which is composed of ectopic adipocytes in the dermis. It was first reported in 1921 by Hoffmann and Zurhelle. Two clinical forms of nevus lipomatosus superficialis have been described: classical (multiple) and solitary. Classical form of nevus lipomatosus superficialis is usually found on pelvic girdle, trunk, buttocks and thighs as soft, skin colored papules or nodules. It is usually present at birth or it appears in the first two decades of life. The solitary form of lipomatosus superficialis appears as a solitary papule or nodule on the back, scalp and arms of the patients with late onset. The lesions are usually asymptomatic, however some patients may complain about pain and itching. Malignant transformation of nevus lipomatosis superficialis has not been reported yet. Therefore, surgical intervention is only necessary for the patients who have cosmetic concerns. Recurrence after surgical removal is very rare. Perineum is an uncommon localization for nevus lipomatosus superficialis. Hereby, we report a 55-year-old Caucasian female with a 6x5,5x4 cm mass in the perineal region. The patient had cosmetic concerns, therefore she wanted the lesion to be removed surgically. The lesion was surgically removed. The histopathological evaluation of the specimen revealed nevus lipomatosus superficialis. A solitary type of giant nevus lipomatosus superficialis in the perineal region of a patient over the age of 50 is a very rare condition. Even rarely seen, nevus lipomatosus superficialis should be kept in mind in the differential diagnosis of perineal masses., Funda Tamer, Mehmet Eren Yuksel, and Literatura
A gut-specific chitinase gene was cloned from the mulberry longicorn beetle, Apriona germari. The A. germari chitinase (AgChi) gene spans 2894 bp and consists of five introns and six exons coding for 390 amino acid residues. AgChi possesses the chitinase family 18 active site signature and three N-glycosylation sites. Southern blot analysis of genomic DNA suggests that AgChi is a single copy gene. The AgChi cDNA was expressed as a 46-kDa polypeptide in baculovirus-infected insect Sf9 cells and the recombinant AgChi showed activity in a chitinase enzyme assay. Treatment of recombinant virus-infected Sf9 cells with tunicamycin, a specific inhibitor of N-linked glycosylation, revealed that AgChi is N-glycosylated, but the carbohydrate moieties are not essential for chitinolytic activity. Northern and Western blot analyses showed that AgChi was specifically expressed in the gut; AgChi was expressed in three gut regions, indicating that the gut is the prime site for AgChi synthesis in A. germari larvae.
As part of a search for natural enemies of the gypsy moth (Lymantria dispar), virus-infected samples were collected near Toulouse, France. Light and electron microscope studies confirmed that the French strain is a multinucleocapsid nuclear polyhedrosis virus (MNPV). In vivo bioassays using the New Jersey strain of L. dispar, and comparing L. dispar MNPV (LdMNPV) strains from France, North America and Korea, showed that the French strain was the least active, whereas the North American strain had the highest activity. The viral efficacy of all strains was enhanced 200 to 1300-fold in the presence of 1% fluorescent brightener. The enhancement was highest in the American strain and lowest in the French strain. French LdMNPV (LdMNPVF) DNA cut with four restriction enzymes (BamHI, EcoRI, HindIII, and NotI) revealed minor fragment size differences, but many similarities when compared to the North American and the Korean strain. PCR amplification of a LdMNPV early gene (G22) was detected in the North American and the Korean strain, but not in the French strain.
We present the results of the first study on the karyotypes of four European species of Roncus: Roncus alpinus L. Koch, 1873, Roncus lubricus L. Koch, 1873, Roncus transsilvanicus Beier, 1928 and Roncus sp. The diploid number was 2n = 23 in Roncus sp., 2n = 43 in R. alpinus and R. transsilvanicus and 2n = 45 in R. lubricus. Telocentric autosomes predominate in species with a high chromosome number and metacentric autosomes in Roncus sp. We assume that the ancestral situation for this genus is a high number of chromosomes. A low number of chromosomes is very likely a consequence of centric fusions, which have possibly played a very important role in karyotype evolution in the genus Roncus. All the species analyzed have the X0 sex chromosome system. The X chromosome is metacentric and is the smallest element in the karyotypes of all the species analyzed., František Šťáhlavský, Jana Christophoryova, Hans Henderickx., and Obsahuje seznam literatury
The karyotypes of pseudoscorpions of three families, Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones), were studied for the first time. Three species of the genus Geogarypus from the family Geogarypidae and 10 species belonging to 8 genera from the family Olpiidae were studied. In the genus Geogarypus the diploid chromosome numbers of males range from 15 to 23. In the family Olpiidae the male chromosome numbers vary greatly, from 7 to 23. The male karyotype of single studied member of the family Garypinidae, Garypinus dimidiatus, is composed of 33 chromosomes. It is proposed that the karyotype evolution of the families Geogarypidae and Olpiidae was characterised by a substantial decrease of chromosome numbers. The diploid numbers of some olpiids are the lowest known 2n within pseudoscorpions and even one of the lowest within the class Arachnida. In spite of a considerable reduction of diploid numbers, all species studied possess a X0 sex chromosome system that is widespread and probably ancestral in pseudoscorpions. Moreover, X chromosomes retain conservative metacentric morphology in the majority of species. During the first meiotic division of males, a high number of chiasmata were observed in some species, up to five per bivalent in Indolpium sp. The transient stage between pachytene and diplotene is typically characterised by extensive decondensation of chromatin in males of geogarypids and in Calocheiridius libanoticus, and we interpret this as a diffuse stage. This is recorded in pseudoscorpions for the first time. The relationships between some species belonging to the family Olpiidae are discussed based on the data obtained.
Functioning of plant-aphid-natural enemy interactions may be associated with the structure and composition of withinfield vegetation, neighborhood fields and field borders, and the regional plant community of cropped and noncropped areas. Farmand region-scale vegetation in the wheat-growing area of the North American Great Plains was hypothesized to effect the abundance of two hymenopteran parasitoids, that differ in physiological and behavioral attributes, of the key pest aphid of wheat, Diuraphis noxia (Mordvilko). The parasitoids had greater sensitivity to farm-scale vegetation (wheat strip rotation with or without spring-sown sunflower) than region-scale vegetation (degree of diversification with other crops and wheat fields converted to conservation grasslands). A two-way factorial design of scale (farm- and region-scale) revealed that parasitoid abundance in grass-dominant (homogeneous) areas especially benefited from adding sunflower to the wheat-fallow strip crop rotation. Considerable sensitivity of the analysis was added when adjusting for seasonality of vegetation, revealing that the region-scale effects were most prominent late season. From a management viewpoint, adding sunflower into the wheat production system, especially in relatively homogeneous vegetation regions, tends to promote local parasitoid populations during the summer when spring-sown plants are maturing and wheat is not in cultivation. Contrasting results for A. albipodus and L. testaceipes were consistent with expectations based on behavioral and physiological attributes of the two aphid parasitoid families they represent. Still, the general management interpretation seems robust for the two parasitoids and has relevance to both farm- and region-scale management schemes that are occurring in the wheat production zone of North American Great Plains.
The Northern pine processionary moth, Thaumetopoea pinivora (Treitschke, 1834) shows a highly scattered distribution with fragmented populations across Europe. A previous study exploring the postglacial history of T. pinivora defined it as a cold-tolerant relict species and concluded that a progressive reduction of suitable habitats after the postglacial expansion from refugia in the southern Iberian peninsula best explained the distribution and genetic structure of populations of this species. However, recent records, both by us and others, challenge this view. Surprisingly, some of the newly found populations from southern Spain use black pine, Pinus nigra J.F. Arnold as a host plant despite the fact that the typical host of the species, Scots pine, Pinus sylvestris L. occurs in the area. We provide genetic data for one of these recently found southern populations where the larvae feed on P. nigra, and compare this with previously published data on individuals collected on P. sylvestris. This data reveals that populations from different host trees are no more genetically differentiated than populations sharing the same host plant. The findings of a wider diet breadth open the way to widen the search for the still unidentified glacial refugium of T. pinivora, and as such may contribute to a better understanding about how the species has spread across Europe., José A. Hódar, Anna Cassel-Lundhagen, Andrea Battisti, Stig Larsson., and Obsahuje bibliografii