Intrauterine and perinatal life are critical periods for programming of cardiometabolic diseases. However, their relative role remains controversial. We aimed to assess, at weaning, sexdependent alterations induced by fetal or postnatal nutritional interventions on key organs for metabolic and cardiovascular control. Fetal undernutrition was induced by dam food restriction (50 % from mid-gestation to delivery) returning to ad libitum throughout lactation (Maternal Undernutrition, MUN, 12 pups/litter). Postnatal overfeeding (POF) was induced by litter size reduction from normally fed dams (4 pups/litter). Compared to control, female and male MUN offspring exhibited: 1) low birth weight and accelerated growth, reaching similar weight and tibial length by weaning, 2) increased glycemia, liver and white fat weights; 3) increased ventricular weight and tendency to reduced kidney weight (males only). Female and male POF offspring showed: 1) accelerated growth; 2) increased glycemia, liver and white fat weights; 3) unchanged heart and kidney weights. In conclusion, postnatal accelerated growth, with or without fetal undernutrition, induces early alterations relevant for metabolic disease programming, while fetal undernutrition is required for heart abnormalities. The progression of cardiac alterations and their role on hypertension development needs to be evaluated. The similarities between sexes in pre-pubertal rats suggest a role of sex-hormones in female protection against programming., D. Muñon-Valverde, P. Rodríguez-Rodríguez, P. Y. Gutierrez-Arzapalo, A. L. López de Pablo, M. Carmen González, R. López-Giménez, B. Somoza, S. M. Arribas., and Obsahuje bibliografii
Activation of GABAB receptors leads to longer inhibitory postsynaptic potentials than activation of GABAA receptors. Therefore GABAB receptors may be a target for anticonvulsant therapy. The present study examined possible effects of GABAB receptor agonist SKF97541 on cortical and hippocampal epileptic afterdischarges (ADs). Epileptic ADs elicited by electrical stimulation of sensorimotor cortex or dorsal hippocampus were studied in adult male Wistar rats. Stimulation series were applied 6 times with 10- or 20-min interval. Either interval was efficient for reliable elicitation of cortical ADs but stimulation at 10-min intervals did not reliably elicit hippocampal ADs, many stimulations were without effect. SKF97541 in dose 1 mg/kg significantly prolonged cortical ADs. Duration of hippocampal ADs was not significantly changed by either dose of SKF97541 in spite of a marked myorelaxant effect of the higher dose. Our present data demonstrated that neither cortical nor hippocampal ADs in adult rats were suppressed by GABAB receptor agonist SKF97541. Proconvulsant effect on cortical ADs indicates a different role in these two brain structures. In addition, duration of refractory period for electrically-induced ADs in these two structures in adult rats is different., P. Fábera, P. Mares., and Obsahuje bibliografii
Hindlimb unweighting (HU) leads to capillary regression in skeletal muscle. However, the molecular mechanism(s) remains to be elucidated. To gain insight into the regulation of this process, we investigated gene expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), angiopoietin, and their receptors in the atrophied muscle induced by HU. The hindlimbs of mice were unweighted by tail-suspension and then the gastrocnemius muscles were isolated after 10 days. To assess the capillary distribution, the capillary endothelium in frozen transverse sections was identified by staining for alkaline phosphatase. The mRNA levels were analyzed using a real-time reverse transcription-polymerase chain reaction. After 10 days of HU, the number of capillaries around a muscle fiber was significantly decreased by 19.5 %, suggesting that capillary regression appears to occur. The expression of HIF-1α was significantly down-regulated after 10 days of HU. The expression of VEGF remained unchanged, whereas those of Flt-1, KDR/Flk-1, and neuropilin-1 were significantly down-regulated, suggesting that VEGF signaling through these receptors would be attenuated. The expression of angiopoietin-1, and -2, as well as their receptor, Tie-2 were also significantly down-regulated, suggesting that angiopoietin-1 signaling through Tie-2 would be attenuated. These findings suggest that alterations in expression of VEGF, angiopoietins, and their receptors may be associated with capillary regression after HU., A. Wagatsuma., and Obsahuje biblografii a bibliografické odkazy
Vasodilator prostaglandins (PGE2, PGI2) play an important role in the regulation of renal blood flow. Hence, inhibition of their production with nonsteroidal anti-inflammatory drugs increases renal vascular resistance and exerts adverse renal effects. It has been reported that besides endothelium-derived prostaglandin products, nitric oxide (NO) may be mainly involved in regulation of renal functions. The aim of our study was to evaluate the effect of cyclooxygenase inhibition with indomethacin and endothelium removal on vascular responses of the renal artery as a model vessel. Isolated segments of rabbit renal arteries were perfused at constant flow. Indomethacin administration (10-5mol.l-1) significantly increased the responses to single doses (0.1, 1, 10 m g) of noradrenaline (NA) as compared with the controls. In indomethacin-pretreated vessels, subsequent deendothelisation by air bubbles enhanced the constrictor responses to NA. In reversed order, when deendothelisation was followed by indomethacin administration, the responses to NA were similar in character. A comparison of renal artery responses to NA in both experimental situations did not reveal any significant differences. It can be supposed that endothelial and non-endothelial factors may be involved in local regulation of renal vascular tone., V. Kristová, M. Kriška, R. Vojtko, A. Kurtanský., and Obsahuje bibliografii
Magnetic resonance imaging has been used for evaluating of a brain edema in experimental animals to assess cytotoxic and vasogenic edema by the apparent diffusion coefficient (ADC) and T2 imaging. This paper brings information about the effectiveness of methylprednisolone (MP) on experimental brain edema. A total of 24 rats were divided into three groups of 8 animals each. Rats with cytotoxic/intracellular brain edema induced by water intoxication were assigned to the group WI. These rats also served as the additional control group CG when measured before the induction of edema. A third group (WIMP) was intraperitoneally administered with methylprednisolone 100 mg/kg during water intoxication treatment. The group WI+MP was injected with methylprednisolone 50 mg/kg into the carotid artery within two hours after the water intoxication treatment. We evaluated the results in four groups. Two control groups (CG, WI) and two experimental groups (WIMP, WI+MP). Rats were subjected to MR scanning 24 h after edema induction. We observed significantly increased ADC values in group WI in both evaluated areas - cortex and hippocampus, which proved the occurrence of experimental vasogenic edema, while ADC values in groups WIMP and WI+MP were not increased, indicating that the experimental edema was not developed and thus confirming the protective effect of MP., Petr Kozler, Vít Herynek, Dana Marešová, Pablo D. Perez, Luděk Šefc, Jaroslav Pokorný., and Obsahuje bibliografii
a1_The day-night variation of food intake and alkaline phosphatase (AP) activity was studied in the duodenum of rats neonatally treated with monosodium glutamate (MSG) and saline-treated (control) rats. The animals were kept under light-dark conditions (light phase from 09:00 h to 21:00 h) with free access to food. AP activity was cytophotometrically analyzed in the brush-border of enterocytes separated from the tip, middle and cryptal part of the villi every 6 h over a 24-hour period. In comparison with the controls, MSG-treated rats consumed about 40 % less food during the dark period and their 24-hour food intake was thus significantly lowered (P<0.001). On the other hand, the nocturnal feeding habit showed a similar pattern: food consumption was high during the night (65 % vs. 75 %) and the lowest consumption was found during the light phase (35 % vs. 25 %) in MSG-treated and control rats, respectively. In agreement with the rhythm of food intake, the highest AP activity was observed during the dark phase and was lowest during the light phase in both groups of animals. These significant day-night variations showed nearly the same pattern in the enterocytes of all observed parts along the villus axis. In comparison with the controls, a permanent increase of AP activity was observed in neonatal MSG-treated rats. This increase was more expressive during the dark phase of the day in the cryptal (P<0.001) and middle part of the villus (P<0.01). From the viewpoint of feeding, this enzyme in MSG-treated rats was enhanced in an inverse relation to the amount of food eaten i.e. despite sustained hypophagia the mean AP activity in the enterocytes along the villus axis was higher than in the control animals during all investigated periods., a2_The present results suggest that the increased AP activity in MSG-treated rats is probably not a consequence of actual day-night eating perturbations but could be a component of a more general effect of MSG. This information contributes to better understanding of the function of intestinal AP and its relation to day-night feeding changes especially in connection with the MSG syndrome., A. Martinková, Ľ. Lenhardt, Š. Mozeš., and Obsahuje bibliografii
As nitric oxide is considered a mediator of liver oxid ative metabolism during sepsis, we studied the effects of exogenous nitric oxide, produced by NO-donor, (±)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), on cell viability, urea biosynthesis and oxygen consumption in rat hepatocyte cultures. Nitric oxide release from NOR-3 was studied using 4,5-diaminofluorescein diacetate. Urea levels were measured by the spectrophotometric method. Cell viability was determined by the MTT test and trypan blue exclusion test, whereas oxygen consumption was measured by a polarographic technique. After 2 h treatment, NOR-3 induced an increase in the levels of nitric oxide. After 2 h of treatment and 24 h after the end of the treatment with NOR-3, both cell viability and urea synthesis were significantly reduced in comparison to the controls for NOR-3 concentrations equal to or greater than 50 μM. A reduction in oxygen consumption was observed in hepatocytes after 40 min treatment with 100 μM NOR-3, even if the cell viability was unchanged. Reduction of oxygen consumption is an early indicator of the metabolic alterations in hepatocytes exposed to nitric oxide. These findings suggest that nitric oxide accumulation acts on hepatocyte cultures inducing cell death and reduction of urea synthesis after 2 hours., R. Chimenti, G. Martino, S. Mazzulla, S. Sesti., and Obsahuje bibliografii a bibliografické odkazy
a_1 In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (PI,max) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev . min-1 and at 120 rev . min-1. In the studied group of subjects PI,max reached during cycling at 60 rev . min-1 was significantly higher (p=0.0001) than that at 120 rev . min-1 (287±29 vs. 215±42 W, respectively for 60 and 120 rev . min-1). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8±2.79 %) and group L with lower MyHC II content in this muscle (28.6±5.8 %). PI,max reached during cycling performed at 60 rev . min-1 in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev . min-1, there was no significant difference in PI,max reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO2), blood hydrogen ion [H+], plasma lactate [La-] and ammonia [NH3] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev . min-1, in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle., a_2 We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H+], [La-] and [NH3] concentrations. This indicates that at high pedaling rates the subjects with higher percentage of MyHC II in the vastus lateralis muscle perform relatively better than the subjects with lower percentage of MyHC II in this muscle., J. Majerczak, Z. Szkutnik, K. Duda, M. Komorowska, I. Kolodziejski, J. Karasinski, J. A. Zoladz., and Obsahuje bibliografii a bibliografické odkazy
Alterations of calcium handling and other second messenger cascades including protein kinase C (PKC) and A (PKA) were suggested to be responsible for abnormal vascular function in spontaneously hypertensive rats (SHR). However, the relative contribution of these pathways to vasoconstriction is still not completely understood. We investigated the effect of Ro 31-8220 (PKC inhibitor) and H89 (PKA inhibitor) on vasoconstriction induced by 120 mM KCl or by addition of 10 μM noradrenaline (NA) in isolated femoral arteries of control Wistar rats and SHR. Moreover, we investigated these responses in the presence and absence of Ca2+ ions in the incubation medium in order to assess the role of calcium influx in these contractions. We observed that while the vasoconstriction in the presence of calcium was not different between Wistar and SHR, the difference between constriction elicited by NA addition in the absence and presence of external calcium was larger in SHR. The inhibition of PKC had no effect on constrictions in SHR, but diminished constrictions in Wistar rats. PKA inhibition slightly enhanced constrictions in Wistar rats, but reduced them in the presence of calcium in SHR. We conclude that vasoconstriction elicited by adrenergic stimulation is more dependent on extracellular calcium influx in SHR compared to Wistar rats. Moreover, the activation of PKA contributes to this calcium-dependent vasoconstriction in SHR but not in Wistar. On the other hand, PKC activation seems to play a less important role in vasoconstriction in SHR than in Wistar rats., M. S. Bal ... [et al.]., and Obsahuje seznam literatury
The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro-duodeno-jejunal contractility in healthy human volunteers. Manometric recordings were obtained and the effects of either a standard meal, continuous intravenous infusion of serotonin (20 nmol/kg/min) or intraluminal bolus infusions of graded doses of serotonin (2.5, 25 or 250 nmol) were compared. In addition, platelet-depleted plasma levels of serotonin, blood pressure, heart rate and electrocardiogram were evaluated. All subjects showed similar results. Intravenous serotonin increased migrating motor complex phase III frequency 3-fold and migrating velocity 2-fold. Intraluminal infusion of serotonin did not change contractile activity. Platelet-depleted-plasma levels of serotonin increased 2-fold following both intravenous and high doses of intraluminal infusions of serotonin. All subjects reported minor short-lived adverse effects following intravenous serotonin stimulation, while only half of the subjects reported minor short-lived adverse effects following intraluminal serotonin stimulations. We conclude that exogenous serotonin in the lumen of the upper part of the small intestine does not seem to change antro-duodeno-jejunal contractility significantly in healthy adult volunteers., M. B. Hansen, F. Arif, H. Gregersen, H. Bruusgaard, L. Wallin., and Obsahuje bibliografii a bibliografické odkazy