Preferential flow paths in the crust, as caused by the presence of the Luchlompolo fault in the drilled section of the Kola Superdeep Borehole (SG-3) and the dip angle of the rock structural elements (layering, schistosity, banding), are favourable for migration of deep fluids to the Earth’s surface. An investigation of the structure, anisotropy and permeability of rocks under PT-conditions in the SG-3 section, in addition to the occurrence of He-isotopes, reveals that the high-permeability zones of the exposed crustal segment are related to two important structural elements of the section: in the upper zone - to the Luchlompolo fault, in the lower one to the contact between the Proterozoic and Archaean complexes. The obtained results on the rock samples from SG-3 indicate a rough correlation between permeability and elastic anisotropy of various rock samples. Simulating increased PT-conditions, corresponding to the relevant depths of 6-8 km document the overlapping temperature and pressure effect, i.e. resulting in a sharp decrease of rock permeability., Felix F. Gorbatsevich, Serafim V. Ikorsky and Andrey V. Zharikov., and Obsahuje bibliografii
Dynamic soil properties are important parameters for the design of structures subjected to various dynamic/cyclic loading such as earthquake which can be obtained by in situ and laboratory measurements. Numerous empirical and mathematical models have been proposed to predict the dynamic properties of soils, including maximum shear modulus (Gmax), normalized shear modulus (G/Gmax - γ) curve, reference shear strain (γr), minimum damping ratio (Dmin) and damping ratio (D - γ) curve. However, the majority of the existing models were proposed for specific soil types, loading characteristics, initial soil fabrics and strain ranges. This paper proposes five universal models to estimate the Gmax, γr and Dmin values, and also G/Gmax - γ and D - γ curves using a database that contains 117 tests on 5 different granular soils. The proposed models include the effect of grading characteristics, void ratio, mean effective confining pressure, consolidation stress ratio (KC) and specimen preparation method. The models are validated using experimental data from previous studies for granular soils. The results indicate that the proposed models are capable of evaluating the dynamic properties of granular soil., Meysam Bayat., and Obsahuje bibliografii