At the southern limit of its range the endangered butterfly Coenonympha oedippus inhabits grasslands (wet, dry) that differ significantly in the abundance of its larval hostplants (wet > dry) and mean annual air temperature (wet < dry). We determined the difference in the wing morphology of individuals in the two contrasting habitats to test whether and how traits associated with wing size, shape and eye like spots vary in the sexes and two ecotypes. We show that sexual dimorphism follows the same (wing size and shape, number of eyespots on forewing) or different (relative area of eyespots on hindwings) patterns in the two contrasting habitats. Irrespective of ecotype, females had larger, longer and narrower wings, and more forewing eyespots than males. Sexual dimorphism in the relative area of eyespots on hindwing was female-biased in the wet, but male-biased in the dry ecotype. Ecotype dimorphism in wing size and the relative area of eyespots on the hindwing is best explained by mean annual air temperature and abundance of host-plants. While ecotype dimorphism in wing size did not differ between sexes, neither in direction (wet > dry) or in degree, in the two sexes the relative area of eyespots on hindwing had opposite patterns (males: dry > wet; females: wet > dry) and was more pronounced in males than in females. The differences in wing shape between ecotypes were detected only in the hindwings of males, with more rounded apex in the dry than in the wet ecotype. We discuss the life-history traits, behavioural strategies and selection mechanisms, which largely account for the sex- and ecotype-specific variation in wing morphology., Jure Jugovic, Sara Zupan, Elena Bužan, Tatjana Čelik., and Obsahuje bibliografii
Variations in leaf gas-exchange characteristics, PSII activity, leaf pigments, and tuber yield were investigated in seven wild and one cultivated species of Dioscorea from Koraput, India, in order to find out their overall adaptability to the environment. The leaf photosynthetic rate, transpiration, stomatal conductance, water-use efficiency, carboxylation efficiency, and photosynthetic pigments were significantly higher in some wild species compared to the cultivated species. In addition, some wild species showed better photochemical efficiency of PSII, photochemical quenching, and electron transport rate in comparison to cultivated one. Furthermore, leaf dry matter accumulation and tuber yield was also higher in some wild species compared to the cultivated species. Taken together, the wild species, such as D. oppositifolia, D. hamiltonii, and D. pubera, showed the superior photosynthetic efficiency compared to the cultivated D. alata and they could be used for future crop improvement programs., B. Padhan, D. Panda., and Obsahuje bibliografii
Thermal requirements for flight in butterflies is determined by a combination of external factors, behaviour and physical constraints. Thorax temperature of 152 butterflies was monitored with an infra-red thermometer in controlled laboratory conditions. The temperature at take-off varied from 13.4°C, for a female Heteronympha merope to 46.3°C, for a female Junonia villida. Heteronympha merope, an understorey species, had the lowest recorded take-off temperatures, with females flying at a much lower thorax temperatures than males. Among the tested butterfly species, warming-up rate was positively correlated with take-off temperature and negatively with body mass. Wing loading is a major variable in determining the thorax flight temperature. Butterflies with the highest wing-loadings experienced the highest thorax temperatures at take-off. A notable exception to this rule is Trapezites symmomus, the only Hesperiidae of our data set, which had thorax flight temperatures of 31.5°C and 34.5°C, well within the range of the observed butterflies, despite a wing load ca. five times higher. The high thorax temperature recorded in J. villida is probably linked to its high flight speed. The results highlight the importance of physical constraints such as body size on the thermal requirements for flight across a range of butterfly species., Gabriel Nève, Casey Hall., and Obsahuje bibliografii
Leaf respiration (R L) of evergreen species co-occurring in the Mediterranean maquis developing along the Latium coast was analyzed. The results on the whole showed that the considered evergreen species had the same R L trend during the year, with the lowest rates [0.83 ± 0.43 μmol(CO2) m-2 s-1, mean value of the considered species] in winter, in response to low air temperatures. Higher R L were reached in spring [2.44 ± 1.00 μmol(CO2) m-2 s-1, mean value] during the favorable period, and in summer [3.17 ± 0.89 μmol(CO2) m-2 s-1] during drought. The results of the regression analysis showed that 42% of R L variations depended on mean air temperature and 13% on total monthly rainfall. Among the considered species, C. incanus, was characterized by the highest R L in drought [4.93 ± 0.27 μmol(CO2) m-2 s-1], low leaf water potential at predawn (Ψpd = -1.08 ± 0.18 MPa) and midday (Ψmd = -2.75 ± 0.11 MPa) and low relative water content at predawn (RWCpd = 80.5 ± 3.4%) and midday (RWCmd = 67.1 ± 4.6%). Compared to C. incanus, the sclerophyllous species (Q. ilex, P. latifolia, P. lentiscus, A. unedo) and the liana (S. aspera), had lower R L [2.72 ± 0.66 μmol(CO2) m-2 s-1, mean value of the considered species], higher RWCpd (91.8 ± 1.8%), RWCmd (82.4 ± 3.2%), Ψpd (-0.65 ± 0.28 MPa) and Ψmd (-2.85 ± 1.20 MPa) in drought. The narrow-leaved species (E. multiflora, R. officinalis, and E. arborea) were in the middle. The coefficients, proportional to the respiration increase for each 10°C rise (Q10), ranging from 1.49 (E. arborea) to 1.98 (A. unedo) were indicative of the different sensitivities of the considered species to air temperature variation., R. Catoni, L. Varone, and L. Gratani., and Obsahuje bibliografii
Young leaves of tropical trees frequently appear red in color, with the redness disappearing as the leaves mature. During leaf expansion, plants may employ photoprotective mechanisms to cope with high light intensities; however, the variations in anthocyanin contents, nonphotochemical quenching (NPQ), and photorespiration during leaf expansion are poorly understood. Here, we investigated pigment contents, gas exchange, and chlorophyll (Chl) fluorescence in Woodfordia fruticosa leaves during their expansion. Young red leaves had significantly lower Chl content than that of expanding or mature leaves, but they accumulated significantly higher anthocyanins and dissipated more excited light energy through NPQ. As the leaves matured, net photosynthetic rate, total electron flow through PSII, and electron flow for
ribulose-1,5-bisphosphate oxygenation gradually increased. Our results provided evidence that photorespiration is of fundamental importance in regulating the photosynthetic electron flow and CO2 assimilation during leaf expansion., S.-B. Zhang, J.-L. Zhang., and Obsahuje seznam literatury
Although there is a considerable amount of information on the ecology, genetics and physiology of life-history traits there is little information on the morphological variations associated with flight ability within species. In this paper, the morphology and ultrastructure of certain organelles in the flight muscles of Gryllus firmus are recorded using transmission electron microscopy. The ultrastructure of the flight muscles of 7-day-old female adults reveals that the ratio of thick to thin filaments is 1 : 3. Each thick filament is surrounded by 6 thin filaments in a hexagonal arrangement. The length of the sarcomere of each myofibril is significantly shorter and diameter of the myofibrils significantly smaller in long-winged than in short-winged morphs. However, the thick filaments in the long-winged morph are denser than those in the short-winged morph. Furthermore, in the long winged morph there are a greater number of mitochondria than in the short-winged morph. These differences correspond with the fact that long-winged crickets are stronger fliers than short-winged crickets., Cheng-Ji Jiang ... [et al.]., and Obsahuje seznam literatury
Modern tomato (Solanum lycopersicum L.) breeding has mainly focused on increasing productivity under unlimited watering. In contrast, some Mediterranean accessions have been traditionally cultivated under water shortage and selected on the basis of their water-use efficiency (WUE). Ramellet and Penjar landraces were planted with other traditional, old and modern inbreeds, under full irrigation. In order to found differences between the tomato accessions, gas-exchange and leaf morphology measurements were performed. Despite high variability, Ramellet and Penjar presented clear differences compared to modern cultivars, mostly related to leaf morphology and photosynthetic traits, while no differences were found in WUE. Results highlighted that better leaf CO2 conductance might be a main factor determining the improvement of net CO2 assimilation and WUE., M. Fullana-Pericàs, M. À. Conesa, S. Soler, M. Ribas-Carbó, A. Granell, J. Galmés., and Obsahuje bibliografii
During the last 12 years, 23 mollusc species were recorded in the Czech Republic for the first time. With the exception of several introduced and invasive species, some of these molluscs are native, rare and even endangered, including Pagodulina pagodula. This rare woodland snail of Alpine origin was found in spring 2012 in the Mutenská obora Nature Reserve, which includes the forested slopes above the Moravská Dyje River in South Moravia. This is another occurrence of the species outside its Alpine range, in addition to one site in Poland, two in Slovakia, and a few sites in Hungary and the Balkan Peninsula. The species was also recorded in the Czech Republic in several interglacial sediments of the Pleistocene and also in one profile of Holocene origin (Atlantic period), not far away from the recent site. and Adam Lacina, Michal Horsák.