In this paper the control of robotic manipulation is investigated. Manipulation system analysis and control are approached in a general framework. The geometric aspect of manipulation system dynamics is strongly emphasized by using the well developed techniques of geometric multivariable control theory. The focus is on the (functional) control of the crucial outputs in robotic manipulation, namely the reachable internal forces and the rigid-body object motions. A geometric control procedure is outlined for decoupling these outputs and for their perfect trajectory tracking. The control of robotic manipulation is investigated. These are mechanical structures more complex than conventional serial-linkage arms. The robotic hand with possible inner contacts is a paradigm of general manipulation systems. Unilateral contacts between mechanical parts make the control of manipulation system quite involved. In fact, contacts can be considered as unactuated (passive) joints. The main goal of dexterous manipulation consists of controlling the motion of the manipulated object along with the grasping forces exerted on the object. In the robotics literature, the general problem of force/motion control is known as "hybrid control". This paper is focused on the decoupling and functional controllability of contact forces and object motions. The goal is to synthesize a control law such that each output vector, namely the grasping force and the object motion, can be independently controlled by a corresponding set of generalized input forces. The functional force/motion controllability is investigated. It consists of achieving force and motion tracking with no error on variables transients. The framework used in this paper is the geometric approach to the structural synthesis of multivariable systems.
We deal with a suitable weak solution (v, p) to the Navier-Stokes equations in a domain Ω ⊂ R 3 . We refine the criterion for the local regularity of this solution at the point (fx0, t0), which uses the L 3 -norm of v and the L 3/2 -norm of p in a shrinking backward parabolic neighbourhood of (x0, t0). The refinement consists in the fact that only the values of v, respectively p, in the exterior of a space-time paraboloid with vertex at (x0, t0), respectively in a ''small'' subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point (x0, t0) if v and p are “smooth” outside the paraboloid.
Let $\Omega$ be a bounded open subset of $\mathbb{R}^{n}$, $n>2$. In $\Omega$ we deduce the global differentiability result \[u \in H^{2}(\Omega, \mathbb{R}^{N}) \] for the solutions $u \in H^{1}(\Omega, \mathbb{R}^{n})$ of the Dirichlet problem \[ u-g \in H^{1}_{0}(\Omega, \mathbb{R}^{N}), -\sum _{i}D_{i}a^{i}(x,u,Du)=B_{0}(x,u,Du) \] with controlled growth and nonlinearity $q=2$. The result was obtained by first extending the interior differentiability result near the boundary and then proving the global differentiability result making use of a covering procedure.
This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The new dynamical system is investigated theoretically, and it is proved that the steady state of the proposed neural network is asymptotic stable and global convergence to the optimal solution of MPEC. Numerical simulations of several examples of MPEC are presented, all of which confirm the agreement between the theoretical and numerical aspects of the problem and show the effectiveness of the proposed model. Moreover, an application to resource allocation problem shows that the new method is a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems.
A Gold Standard Word Alignment for English-Swedish (GES) is a resource containing 1164 manually word aligned sentences pairs from English and Swedish versions of Europarl v. 2.
The author obtains an estimate for the spatial gradient of solutions of the heat equation, subject to a homogeneous Neumann boundary condition, in terms of the gradient of the initial data. The proof is accomplished via the maximum principle; the main assumption is that the sufficiently smooth boundary be convex.