This research presents an experimental study on the scouring mechanism at semi-integral bridge piers. Based on laboratory experiments, this study focuses on the relationship between scour depth in complex pier groups and combined piles bridge and various parameters including the variation of inflow velocity, distance, and time. 1 200 data were collected for flow velocity and scour. The flow pattern and scour were analyzed for different flow discharges and flow depths. The results showed that the scour development with respect to time was greater for higher flow depth and bigger flow discharge at semi-integral bridges. In addition, the equilibrium scour depth increased with the approach flow depth around piers at semi-integral bridges. Velocity distribution also affected the scour development. It decreased when approaching the bridge but increased from upstream to downstream of the flume.