
i

Smashcima User Documentation
1

2024-12-30

Mgr. Ji�í Mayer, Doc. Pavel Pecina, MgA. Jan Haji� jr., Ph.D.

Prague Music Computing Group

Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University

1This work has been done by the OmniOMR project within the 2023-2030 NAKI III programme, supported by the Ministry
of Culture of the Czech Republic (DH23P03OVV008).

Contents

1 Introduction 3

1.1 What is Smashcima, who is it for, and how is it novel? . 3
1.2 Development . 4
1.3 Financing . 4
1.4 How to cite . 4
1.5 Contact . 4

2 Producing music notation images 5

2.1 Context . 5
2.2 Invoking a model . 5
2.3 The scene . 7
2.4 Exporting . 7
2.5 Conclusion . 8

3 Changing background texture 9

3.1 Standard model use . 9
3.2 Synthesizers . 9
3.3 Using di�erent paper synthesizer . 9
3.4 Replacing the random number generator . 11
3.5 Conclusion . 11

4 Using custom glyphs 13

4.1 Glyph synthesizer . 13
4.2 Classification labels . 13
4.3 Constructing a glyph . 14

4.3.1 A�ne space . 14
4.3.2 Sprite . 14
4.3.3 Labeled region . 15

4.4 Putting it all together . 15
4.5 Glyphs and line glyphs . 17
4.6 Conclusion . 18

iii

Chapter 1

Introduction

Smashcima is a library and framework for synthesizing images containing handwritten music for creating
synthetic training data for Optical Music Recognition (OMR) models.

Try out the demo on Huggingface Spaces right now!

Example output with MUSCIMA++ writer no. 28 style:

Install from pypi with:

pip install smashcima

This document is meant for OMR developers who want to use Smashcima to produce synthetic data for their
use case. That includes adapting it to the visual domain with new annotations of music notation glyphs. (The
technical documentation, on the other hand, is meant for those who want to contribute to the development of
Smashcima and extends its capabilities beyond the glyph-based paradigm that it currently serves.)

1.1 What is Smashcima, who is it for, and how is it novel?

Smashcima is a Python package primarily intended to be used as part of optical music recognition workflows,
esp. with domain adaptation in mind. The target user is therefore a machine-learning, document processing,
library sciences, or computational musicology researcher with minimal skills in python programming.

Smashcima is the only tool that simultaneously:

• synthesizes handwritten music notation,
• produces not only raster images but also segmentation masks, classification labels, bounding boxes, and

more,
• synthesizes entire pages as well as individual symbols,
• synthesizes background paper textures,
• synthesizes also polyphonic and pianoform music images,

3

https://huggingface.co/spaces/Jirka-Mayer/Smashcima
https://pypi.org/project/smashcima/

4 CHAPTER 1. INTRODUCTION

• accepts just MusicXML as input,
• is written in Python, which simplifies its adoption and extensibility.

Therefore, Smashcima brings a unique new capability for optical music recognition (OMR): synthesizing a
near-realistic image of handwritten sheet music from just a MusicXML file. As opposed to notation editors,
which work with a fixed set of fonts and a set of layout rules, it can adapt handwriting styles from existing
OMR datasets to arbitrary music (beyond the music encoded in existing OMR datasets), and randomize
layout to simulate the imprecisions of handwriting, while guaranteeing the semantic correctness of the output
rendering. Crucially, the rendered image is provided also with the positions of all the visual elements of music
notation, so that both object detection-based and sequence-to-sequence OMR pipelines can utilize Smashcima
as a synthesizer of training data.

(In combination with the LMX canonical linearization of MusicXML, one can imagine the endless possibilities
of running Smashcima on inputs from a MusicXML generator.)

1.2 Development

Smashcima is being developed on GitHub: https://github.com/OMR-Research/Smashcima. It is part of the
OMR-Research organization to maximize reach within the OMR community.

Documentation specific to contributing is available directly in the software’s GitHub repository.

1.3 Financing

This work has been done by the OmniOMR project within the 2023-2030 NAKI III programme, supported by
the Ministry of Culture of the Czech Republic (DH23P03OVV008).

1.4 How to cite

There’s a publication being written. Until then, you can cite the original Mashcima paper:

Ji�í Mayer and Pavel Pecina. Synthesizing Training Data for Handwritten Music Recognition.
16th International Conference on Document Analysis and Recognition, ICDAR 2021. Lausanne,
September 8-10, pp. 626-641, 2021.

1.5 Contact

Developed and maintained by Ji�í Mayer (mayer@ufal.m�.cuni.cz) as part of the Prague Music Computing
Group lead by Jan Haji� jr. (hajicj@ufal.m�.cuni.cz).

https://www.musicxml.com/
https://github.com/Jirka-Mayer/lmx
https://github.com/OMR-Research/Smashcima
https://ufal.mff.cuni.cz/jiri-mayer
mailto:mayer@ufal.mff.cuni.cz
https://ufal.mff.cuni.cz/pmcg
https://ufal.mff.cuni.cz/pmcg
https://ufal.mff.cuni.cz/jan-hajic-jr
mailto:hajicj@ufal.mff.cuni.cz

Chapter 2

Producing music notation images

This tutorial shows you by-example how you can use Smashcima to generate synthetic data.

2.1 Context

You typically want to use synthetic training data to solve a specific problem. You might have an existing
evaluation dataset and you know what it looks like. You’d like to create synthetic data that mimics that
target evaluation dataset, so that you can train a machine learning model on it.

Smashcima works with the notion of a Model. A model is a function that, when invoked, produces a synthetic
training sample. It’s called a model, because it’s a generative model, describing the resulting synthetic dataset.

Smashcima then is a framework for building custom models, but it also comes with pre-defined models that
you can use as-is, or just configure to bend them to your needs.

2.2 Invoking a model

The core model that comes with smashcima is the BaseHandwrittenModel. It uses the MUSCIMA++ dataset
symbols to produce synthetic handwritten music notation.

The model takes in musical content in the form of MusicXML and produces the corresponding number of
music notation pages. You can test it on this example music score taken from the OpenScore Lieder corpus.

Download the MusicXML score and run this code:

import cv2
import smashcima as sc

model = sc.orchestration.BaseHandwrittenModel()
scene = model("lc5003150.musicxml")

for i, page in enumerate(scene.pages):
bitmap = scene.render(page)
cv2.imwrite(f"page_{i}.png", bitmap)

First, smashcima starts downloading assets it needs for the synthesis. This happens only during the first invoca-
tion. Then these assets are reused, because they are stored in the user’s cache directory (~/.cache/smashcima
on linux).

[Smashcima Assets]: Installing bundle MuscimaPP...
Downloading MUSCIMA++ dataset...

5

../assets/tutorial-1/lc5003150.musicxml
https://musescore.com/user/27638568/scores/5003150

6 CHAPTER 2. PRODUCING MUSIC NOTATION IMAGES

Downloading https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11372/LRT-2372/MUSCIMA-pp_v1.0.zip
and saving it to /home/jirka/.cache/smashcima/assets/MuscimaPP/MUSCIMA-pp_v1.0.zip
100%|++++++++++| 21.8M/21.8M [00:17<00:00, 1.26MiB/s]
Extracting the zip...
Checking bundle directory structure...
[Smashcima Assets]: Bundle MuscimaPP installed.
[Smashcima Assets]: Installing bundle MuscimaPPGlyphs...
100%|++++++++++| 140/140 [02:17<00:00, 1.02it/s]
Writing... /home/jirka/.cache/smashcima/assets/MuscimaPPGlyphs/symbol_repository.pkl
[Smashcima Assets]: Bundle MuscimaPPGlyphs installed.
[Smashcima Assets]: Installing bundle MzkPaperPatches...
Downloading MZK paper patches...
100%|++++++++++| 10/10 [00:06<00:00, 1.52it/s]
[Smashcima Assets]: Bundle MzkPaperPatches installed.

The two pages are synthesized, with the layout information preserved (measures per system, systems per
page):

This model by default rasterizes the scene at 300 DPI, so the two resulting images are both 2582x3652 pixels.

2.3. THE SCENE 7

2.3 The scene

What inputs and outputs the model has is completely up to the model, since this depends on the domain it
generates. For exmaple, you could build a model that creates MusicXML data out of thin air, in which case it
would have signature model(void) -> str. But since smashcima focuses primarily on visual data, we call
the value returned from the model a Scene.

Notice that the model does not return the np.ndarray bitmaps directly, instead it returns a custom object
that contains much more data than just the images. In fact, it contains almost all the data imaginable in the
form of a graph of so-called scene objects. This includes the individual glyphs, their masks, bounding boxes,
classification labels, sta�ines and also the semantics loaded from the MusicXML file and its mapping onto
the visual scene objects.

2.4 Exporting

For convenience, the scene defines the render method, which just constructs a BitmapRenderer exporter
and invokes it on the scene, producing the final bitmap. See the smashcima.exporting module for a list of
available exporters.

For debugging purposes there’s also the SVG exporter, which you can invoke on the first page with the labeled
regions overlay enabled like this:

exporter = sc.exporting.SvgExporter(
render_labeled_regions=True

)
svg = exporter.export_string(

scene.pages[0].view_box
)

write SVG to a file
(and you can open that in a web browser or Inkscape)
with open("page_0.svg", "w") as f:

f.write(svg)

8 CHAPTER 2. PRODUCING MUSIC NOTATION IMAGES

2.5 Conclusion

You’ve learned how to use the top-level concepts of smashcima (models, assets, scenes, and exporters). If
you want to learn more about each, take a look at the documentation. Otherwise continue with the next
tutorial, which will teach you how to modify the BaseHandwrittenModel, so that it produces only white or
transparent background.

Chapter 3

Changing background texture

This tutorial shows how to modify an existing Model class. More specifically, how to change the background
texture for the BaseHandwrittenModel.

3.1 Standard model use

When using the BaseHandwrittenModel as is, you just instantiate and invoke it:

import cv2
import smashcima as sc

model = sc.orchestration.BaseHandwrittenModel()
scene = model("my-input-file.musicxml")

for i, page in enumerate(scene.pages):
bitmap = scene.render(page)
cv2.imwrite(f"page_{i}.png", bitmap)

3.2 Synthesizers

Internally, a Model is a collection of synthesizers that are configured and connected together to serve a single
purpose. Synthesizers come from the smashcima.synthesis module and they are responsible for:

• synthesizing page layout (dimensions and sta� placement)
• synthesizing staves (empty sta�ines)
• synthesizing music notation (musical content onto empty sta�ines)
• synthesizing glyphs (individual musical symbols)
• synthesizing paper texture

As you can see, each synthesizer is like a very narrow model, that is designed to be used in conjunction with
the other synthesizers, and synthesizes one tiny piece of the entire puzzle.

3.3 Using di�erent paper synthesizer

We can modify an existing model by changing the configuration of its internal synthesizers. The model is
configured inside its constructor, so in order to change it, we need to make a child class and override these
methods:

9

10 CHAPTER 3. CHANGING BACKGROUND TEXTURE

from smashcima.synthesis import PaperSynthesizer, SolidColorPaperSynthesizer

class MyModel(sc.orchestration.BaseHandwrittenModel):
def register_services(self):

super().register_services()

for paper synthesizer use the solid color synth,
instead of the texture-quilting default synthesizer
self.container.interface(

PaperSynthesizer, # when people ask for this
SolidColorPaperSynthesizer # construct this

)

def resolve_services(self):
super().resolve_services()

get the paper synthesizer instance
self.paper_synth: SolidColorPaperSynthesizer \

= self.container.resolve(PaperSynthesizer)

def configure_services(self):
super().configure_services()

and configure paper synthesizer�s properties
(BGRA uint8 format)
self.paper_synth.color = (187, 221, 234, 255)

The model consists of a group of synthesizers and additional classes that together are called services. These
services are registered into, and constructed by a service container, accessible via self.container. These
services are set up in three methods called by the model constructor:

• register_services Registers types into the container, binds them to interfaces.
• resolve_services Asks the container to construct services we will use later.
• configure_services Configures resolved services instances.

Explainer: The purpose of a service container is to construct services (also known as resolving
services). You first tell the container what services it should know about (e.g. When asked about
a car, construct a Toyota Corolla.). Then you resolve services that the model will use later and
store them in the model in self.my_car. Finally, you adjust the configuration on the constrctued
service instances to suit your needs. When the container resolves a service, it recursively resolves
all of its dependencies (constructor arguments), which greatly simplifies the service construction
process.

Note: If you call .resolve on the same type multiple times, you only get one instance constructed
and then returned repeatedly. Another words, all services are registered as singletons.

To learn more, see the documentation on Models.

Now we can use this new model type to do the synthesis:

model = MyModel()
scene = model("my-input-file.musicxml")

for i, page in enumerate(scene.pages):
bitmap = scene.render(page)
cv2.imwrite(f"page_{i}.png", bitmap)

You can use (255, 255, 255, 255) to get white background and (0, 0, 0, 0) to get transparent back-

https://www.cosmicpython.com/book/chapter_13_dependency_injection.html

3.4. REPLACING THE RANDOM NUMBER GENERATOR 11

ground.

3.4 Replacing the random number generator

Not all services in the model are synthesizers. For example, most synthesizers need a source of randomness.
Therefore there is a random.Random instance registered as a service in the container. The instance is also
stored on the model in the self.rng field. You can check they are the same:

import random

model = MyModel()
resolved_rng = model.container.resolve(random.Random)
field_rng = model.rng

assert resolved_rng is field_rng # succeeds!

You can replace the random number generator during service registration with your own instance:

my_rng = random.Random(42)

class MyRandomModel(sc.orchestration.BaseHandwrittenModel):
def register_services(self):

super().register_services()

self.container.instance(
random.Random, # when people ask for this
my_rng # return this

)

model = MyRandomModel()
assert model.rng is my_rng # succeeds!

3.5 Conclusion

You’ve learned how to configure model sevices for existing models. To learn more, read the documentation
on Models and examine the base model you are overriding to see what services it registers and how, so that
you know how to modify them. The next tutorial will teach you how to replace the GlyphSynthesizer of a
model with your own glyph synthesizer.

12 CHAPTER 3. CHANGING BACKGROUND TEXTURE

Chapter 4

Using custom glyphs

This tutorial shows how you can provide your own set of glyphs for synthesis.

4.1 Glyph synthesizer

In the previous tutorial we explored how a Model is really just a collection of synthesizers, that are configured
and wired together. One of these synthesizers is the GlyphSynthesizer. It’s responsible for creating Glyphs -
scene objects that consist of an image, segmentation mask, and a classification label.

The smashcima.synthesis.GlyphSynthesizer is just an interface (python abstract base class) with two
methods to be implemented:

import smashcima as sc

class MyGlyphSynthesizer(sc.GlyphSynthesizer):
def supports_label(self, label: str) -> bool:

return # true if we can create this glyph type #

def create_glyph(self, label: str) -> sc.Glyph:
return # create requested glyph here #

The first method is an introspection API that lets the user check, whether the currently used glyph synthesizer
supports all the requested glyph types (classification labels).

Since we’re building a dummy synthesizer, we will return True always:

def supports_label(self, label: str):
return True

4.2 Classification labels

The string argument to both functions is the classification label of the requested glyph. It’s allowed to be any
string, but Smashcima comes with two sets of pre-defined labels that should suite most use cases.

First is the sc.SmuflLabels enum. It contains most of the important classes present in the SMuFL standard.
Because the enum is not a string, don’t forget to ask for the .value when getting the underlying string value.
Here’s a list of the few common glyph labels:

print(sc.SmuflLabels.noteheadWhole.value) # "smufl::noteheadWhole"
print(sc.SmuflLabels.noteheadBlack.value) # "smufl::noteheadBlack"
print(sc.SmuflLabels.restQuarter.value) # "smufl::restQuarter"

13

https://www.smufl.org/

14 CHAPTER 4. USING CUSTOM GLYPHS

Because SMuFL is not really built to describe line-like glyphs (beams, sta�ines) and because some glyphs are
missing (individual flag strokes), there’s also the sc.SmashcimaLabel enum which contains these additional
glyph labels.

print(sc.SmashcimaLabels.beam.value) # "smashcima::beam"
print(sc.SmashcimaLabels.staffMeasure.value) # "smashcima::staffMeasure"

4.3 Constructing a glyph

A Glyph is a scene object that represents a visual unit of music notation. It carries its own AffineSpace
which defines the glyph’s local coordinate system. Then it contains a list of Sprites, where a sprite is just a
raster image (OpenCV BGRA uint8 bitmap as a 3D numpy array) together with its DPI (for scaling) and its
placement within an a�ne space. Lastly it contains a LabeledRegion, which is a set of polygons in the a�ne
space, encapsulating some 2D area (i.e. the segmentation mask of the glyph).

Let’s explore those pieces one by one.

4.3.1 A�ne space

At the core of Smashcima’s visual scene objects is the AffineSpace. It defines a coordinate system and
acts as a parent for various visual scene objects. A�ne spaces can be nested in a hierarchy, similar to how
most raster graphics software operates (for example SVG’s <g> group element). A�ne space contains an
a�ne Transform, which describes the coordinate transformation matrix from this space to the parent’s space
(another words, it defines how is this space placed within the parent space). The root space has None parent
and its transform is ignored.

A glyph has its own AffineSpace and when it’s returned from the synthesizer, it must be a root space (have
no parent) and its transform will be set later, when the glyph is positioned in the parent space (so we can
leave it at default, which is identity transform).

The scene visual hierarchy has unit-less coordinates, but the convention is to assume that one unit is one
millimeter. This is preserved throughout Smashcima, as the a�ne space hierarchy should ideally only translate
and rotate, but not shear, nor scale. The scale of objects should be preserved to keep the unit corresponding
to one millimeter. Various internal DPI calculations depend on this assumption.

The coordinate system is assumed to have the X axis as the first dimension, increasing to the right (on
the screen) and Y axis as the second dimension, increasing down (on the screen). This is the standard 2D
computer graphics setup.

This is how we can create a new a�ne space:

space = sc.AffineSpace()

4.3.2 Sprite

Sprite is a raster image, placed in an a�ne space.

Smashcima uses the OpenCV bitmap format and it always has the BGRA 4-channel, uint8 format. So the
numpy array shape is [height, width, 4].

We will create a 3x3 millimeter red circle sprite, centered on the origin of the parent a�ne space. The sprite
will have the resolution of 300 DPI, which translates to 36x36 pixels.

import numpy as np
import cv2

size in pixels
size = int(sc.mm_to_px(3, dpi=300))

4.4. PUTTING IT ALL TOGETHER 15

BGRA bitmap with red centered circle
bitmap = np.zeros(shape=(size, size, 4), dtype=np.uint8)
cv2.circle(

img=bitmap,
center=(size // 2, size // 2),
radius=size // 2,
color=(0, 0, 255, 255), # BGRA
thickness=-1

)

construct the sprite instance
with the affine space created earlier
sprite = sc.Sprite(

space=space,
bitmap=bitmap,
bitmap_origin=sc.Point(0.5, 0.5),
dpi=300,
transform=sc.Transform.identity()

)

The bitmap_origin value is a 0.0 to 1.0 in X, Y axes, which specifies where does the bitmap has its origin
(where in the pixel image should the a�ne space origin line up). The dpi field spcifies the sprite scale, with
the origin fixed in place.

The transform is an a�ne transform that allows you to position the bitmap origin in the parent a�ne space
somewhere else, than over the a�ne space origin. If you want to place the sprite at (50, 20) in the a�ne
space, you can provide a translation transform sc.Transform.translate(sc.Vector2(50, 20)).

4.3.3 Labeled region

Lastly, the glyph has to specify the segmentation mask with a label, to allow for automatic generation of
bounding boxes from any viewport.

This can be done quickly by utilizing the alpha-channel on our sprite. There’s a built-in method that uses
the cv2.findContours method, applied to the 50% thresholded alpha-channel of the sprite. This returns a
jagged polygon tracing all the glyph pixels.

region: sc.LabeledRegion = sc.Glyph.build_region_from_sprites_alpha_channel(
label="smufl::noteheadBlack", # we will set the requested label instead
sprites=[sprite]

)

The constructed LabeledRegion is created in the same AffineSpace as the given sprites live. It is automati-
cally attached under that space:

assert region.space is sprite.space # succeeds!
assert region.space is space # succeeds!

4.4 Putting it all together

When we take all of this code and put it into the glyph syntehsizer, we get this:

class RedCircleGlyphSynth(sc.GlyphSynthesizer):
def supports_label(self, label: str) -> bool:

return True

def create_glyph(self, label: str) -> sc.Glyph:

16 CHAPTER 4. USING CUSTOM GLYPHS

space = sc.AffineSpace()

size = int(sc.mm_to_px(3, dpi=300))
bitmap = np.zeros(shape=(size, size, 4), dtype=np.uint8)
cv2.circle(

img=bitmap,
center=(size // 2, size // 2),
radius=size // 2,
color=(0, 0, 255, 255), # BGRA
thickness=-1

)

sprite = sc.Sprite(
space=space,
bitmap=bitmap,
bitmap_origin=sc.Point(0.5, 0.5),
dpi=300,
transform=sc.Transform.identity()

)

return sc.Glyph(
space=space,
region=sc.Glyph.build_region_from_sprites_alpha_channel(

label=label,
sprites=[sprite]

),
sprites=[sprite]

)

Next, we modify the BaseHandwrittenModel to use our glyph synthesizer instead of the default MUSCIMA++
synthesizer:

class RedCircleModel(sc.orchestration.BaseHandwrittenModel):
def register_services(self):

super().register_services()

register a different implementation for the interface
self.container.interface(

sc.GlyphSynthesizer,
RedCircleGlyphSynth

)

Finally, we execute the model:

model = RedCircleModel()
scene = model("my-input-file.musicxml")

bitmap = scene.render(scene.pages[0])
cv2.imwrite("red-circles.png", bitmap)

4.5. GLYPHS AND LINE GLYPHS 17

4.5 Glyphs and line glyphs

You can see that the resulting image still contains sta�ines, beams, and stems.

Sta�ines are special, they are synthesized using a StafflinesSynthesizer and they completely side-step
the GlyphSynthesizer interface (because they come with their own non-a�ne coordinate system and lots of
specifics).

Beams and stems are synthesized separately, because they are LineGlyphs. A LineGlyph inherits from Glyph,
so it has all the same properties, but it has two points - the starting and the ending point. These two points
are also used to synthesize line glyphs, so the LineGlyphSynthesizer interface has a slightly di�erent API.
Overriding those is analogous to regular glyphs.

While line glyphs have these two special points, regular glyphs have only one - the a�ne space origin point.
This point is used to place glyphs into the scene by the music notation synthesizer. Where exactly this origin
point is located in relation to the glyph image depends on the glyph label (glyph type). Most glyphs have the
origin as the geometric center (noteheads, rests), but some have it o�set to some important location (the
4th line for the G-clef, the eye center of a flat, the touching line for a whole and half rests, etc.). See the
documentation on Glyphs to learn more.

18 CHAPTER 4. USING CUSTOM GLYPHS

4.6 Conclusion

You’ve learned how to implement a custom glyph synthesizer and use it in a larger model. Overriding other
synthesizers is analogous. Now you can read the rest of the documentation to learn in more detail about
various parts of the Smashcima framework.

	Introduction
	What is Smashcima, who is it for, and how is it novel?
	Development
	Financing
	How to cite
	Contact

	Producing music notation images
	Context
	Invoking a model
	The scene
	Exporting
	Conclusion

	Changing background texture
	Standard model use
	Synthesizers
	Using different paper synthesizer
	Replacing the random number generator
	Conclusion

	Using custom glyphs
	Glyph synthesizer
	Classification labels
	Constructing a glyph
	Affine space
	Sprite
	Labeled region

	Putting it all together
	Glyphs and line glyphs
	Conclusion

