
i

Smashcima Technical Documentation1

2024-12-30

Mgr. Ji�í Mayer, Doc. Pavel Pecina, MgA. Jan Haji� jr., Ph.D.

Prague Music Computing Group

Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University

1This work has been done by the OmniOMR project within the 2023-2030 NAKI III programme, supported by the Ministry
of Culture of the Czech Republic (DH23P03OVV008).

Contents

1 Introduction 3
1.1 What is Smashcima, who is it for, and how is it novel? . 3
1.2 Development . 4
1.3 Financing . 4
1.4 How to cite . 4
1.5 Contact . 4

2 Design Overview 5
2.1 Synthetic data . 5
2.2 Data model (the scene) . 5
2.3 Exporting (and rendering) . 6
2.4 Synthesis . 6
2.5 Models . 6
2.6 Assets . 6
2.7 Other submodules . 6

3 Models and service orchestration 9
3.1 External model interface . 9
3.2 Service orchestration . 10

3.2.1 Service container . 10
3.2.2 Service construction in a model . 12
3.2.3 Pre-defined services . 12

3.3 Re-configuring existing models . 13

4 Scene objects 15
4.1 Understanding the data model by designing scene types from scratch 15

4.1.1 Containers . 18
4.1.2 Extensibility . 19

4.2 How SceneObject works . 21
4.2.1 Lists and None . 21
4.2.2 Memory leaks . 21
4.2.3 Detaching objects from scene . 21

4.3 Relationship querying . 22
4.3.1 Named queries . 23

4.4 When to use the Scene class . 23
4.5 Conclusion . 24

5 A�ne spaces and rendering 25
5.1 A�ne space . 25

5.1.1 Space hierarchy . 25
5.1.2 Constructing a�ne spaces . 26
5.1.3 Understanding transforms . 26

iii

iv CONTENTS

5.1.4 Units are millimeters . 27
5.2 Sprites . 27
5.3 View boxes . 28
5.4 Bitmap renderer . 28

6 Synthesizer interfaces 31
6.1 Smashcima synthesizers . 31
6.2 Using synthesizers . 31
6.3 Extensibility . 31

7 ColumnLayoutSynthesizer interface 33
7.1 Public API . 33
7.2 Implementations . 34

8 GlyphSynthesizer interface 35
8.1 Glyph scene object . 35

8.1.1 Placing a glyph into a scene . 36
8.1.2 Glyph origin point . 36
8.1.3 Semantics of visual objects . 36

8.2 Public API . 37
8.2.1 Checking supported glyph labels . 37

8.3 Implementing a glyph synthesizer . 37
8.4 Implementations . 38

9 Glyphs 39
9.1 Clefs . 39
9.2 Time signatures . 40
9.3 Noteheads . 40
9.4 Augmentation dot . 40
9.5 Flags . 40
9.6 Accidentals . 41
9.7 Articulation . 42
9.8 Rests . 42

10 Line glyphs 43
10.1 List of line glyphs . 43

Chapter 1

Introduction

Smashcima is a library and framework for synthesizing images containing handwritten music for creating
synthetic training data for Optical Music Recognition (OMR) models.

Try out the demo on Huggingface Spaces right now!
Example output with MUSCIMA++ writer no. 28 style:

Install from pypi with:

pip install smashcima

This document is for those who want to not just apply Smashcima in their OMR workflows within their
visual domains (such as new manuscript datasets), but to understand how it is designed and contribute to its
development (e.g. to enable it to operate without individual glyphs).

1.1 What is Smashcima, who is it for, and how is it novel?
Smashcima is a Python package primarily intended to be used as part of optical music recognition workflows,
esp. with domain adaptation in mind. The target user is therefore a machine-learning, document processing,
library sciences, or computational musicology researcher with minimal skills in python programming.

Smashcima is the only tool that simultaneously:

• synthesizes handwritten music notation,
• produces not only raster images but also segmentation masks, classification labels, bounding boxes, and

more,
• synthesizes entire pages as well as individual symbols,
• synthesizes background paper textures,
• synthesizes also polyphonic and pianoform music images,
• accepts just MusicXML as input,

3

https://huggingface.co/spaces/Jirka-Mayer/Smashcima
https://pypi.org/project/smashcima/
https://www.musicxml.com/

4 CHAPTER 1. INTRODUCTION

• is written in Python, which simplifies its adoption and extensibility.

Therefore, Smashcima brings a unique new capability for optical music recognition (OMR): synthesizing a
near-realistic image of handwritten sheet music from just a MusicXML file. As opposed to notation editors,
which work with a fixed set of fonts and a set of layout rules, it can adapt handwriting styles from existing
OMR datasets to arbitrary music (beyond the music encoded in existing OMR datasets), and randomize
layout to simulate the imprecisions of handwriting, while guaranteeing the semantic correctness of the output
rendering. Crucially, the rendered image is provided also with the positions of all the visual elements of music
notation, so that both object detection-based and sequence-to-sequence OMR pipelines can utilize Smashcima
as a synthesizer of training data.

(In combination with the LMX canonical linearization of MusicXML, one can imagine the endless possibilities
of running Smashcima on inputs from a MusicXML generator.)

1.2 Development
Smashcima is being developed on GitHub: https://github.com/OMR-Research/Smashcima. It is part of the
OMR-Research organization to maximize reach within the OMR community.

Documentation specific to contributing is available directly in the software’s GitHub repository.

1.3 Financing
This work has been done by the OmniOMR project within the 2023-2030 NAKI III programme, supported by
the Ministry of Culture of the Czech Republic (DH23P03OVV008).

1.4 How to cite
There’s a publication being written. Until then, you can cite the original Mashcima paper:

Ji�í Mayer and Pavel Pecina. Synthesizing Training Data for Handwritten Music Recognition.
16th International Conference on Document Analysis and Recognition, ICDAR 2021. Lausanne,
September 8-10, pp. 626-641, 2021.

1.5 Contact
Developed and maintained by Ji�í Mayer (mayer@ufal.m�.cuni.cz) as part of the Prague Music Computing
Group lead by Jan Haji� jr. (hajicj@ufal.m�.cuni.cz).

https://github.com/Jirka-Mayer/lmx
https://github.com/OMR-Research/Smashcima
https://ufal.mff.cuni.cz/jiri-mayer
mailto:mayer@ufal.mff.cuni.cz
https://ufal.mff.cuni.cz/pmcg
https://ufal.mff.cuni.cz/pmcg
https://ufal.mff.cuni.cz/jan-hajic-jr
mailto:hajicj@ufal.mff.cuni.cz

Chapter 2

Design Overview

Smashcima is a python package aimed at synthesizing training data for Optical Music Recognition (OMR).
Its ultimate goal is to create synthetic images of music notation, together with the corresponding annotations
(textual, visual, or both). The internal structure of Smashcima follows from this goal and is described in this
file.

2.1 Synthetic data
Deep learning methods currently yield the best results for tackling OMR and these need training data in
order to work. While some training data may be produced manually, this process is costly and synthesis could
be used to mix, shu�e, and reuse this small amount of manually annotated data to produce much larger
amount of synthetic data. Therefore the goal of data synthesis here is not necessarily to create new data
out of thin air, but rather to augment existing data to prevent overfitting during model training, making the
resulting recognition models more robust.

The training data for supervised methods (which are among the most prominent) comes in pairs of input
images and corresponding output annotations. These input images are usually scans or photos of physical
music notation documents, which are available in bitmap formats (JPG, PNG). These images can be individual
musical symbols, staves, or whole pages. The annotations are, however, much more diverse and often task-
specific. They could be image-classification classes, image-detection bounding boxes, image-segmentation
masks, music notation graphs, sequential textual representations (aligned with the image or not), or complex
notation formats, such as MusicXML, MEI, Humdrum **kern, Lilypond, ABC, and others.

The purpose of Smashcima is to synthesize such image-annotation aggregates.

2.2 Data model (the scene)
In order for the synthesizer to get a handle on the synthetic data during synthesis, it needs some internal
representation of the synthesized music page - a data model. This data model is called the scene and it
exists as a cluster of python class instances that inherit from the abstract class SceneObject and form an
interlinked graph.

A scene should contain enough information to produce most desired annotation formats together with the
image bitmap.

Scene objects live in the smashcima.scene module.

5

6 CHAPTER 2. DESIGN OVERVIEW

2.3 Exporting (and rendering)
A scene is not the image, nor the annotation. It is more: it contains all the necessary information to produce
both. The process of extracting a specific annotation format (say MusicXML) from the scene is called
exporting.

Similarly, the image bitmap itself can be exported from the scene, but since now we deal with visual data, we
call this process rendering (terminology borrowed from computer graphics). In other words, rendering is a
subset of exporting.

This distinction between the scene and the exported format lets us add exporters for additional output formats
on demand.

Exporters and renderers live in the smashcima.exporting module.

2.4 Synthesis
The core of the actual synthesis lies in the process of constructing the scene. The scene is the data structure,
and a synthesizer is the algorithm that processes it. Specifically, a synthesizer is some python code that, given
some input arguments, constructs a specified subset of the scene (which can be of course the scene in its
entirety as well).

Note: APIs of synthesizers vary: It can either create a part of a scene and return it, or it can add
something into an existing scene. It depends on the task.

Synthesizers come in lots of sizes, from small ones synthesizing individual symbols, to large ones putting
together the whole page. Smashcima should act as a collection of synthesizers for you to choose and match,
given the OMR task you want to solve.

Synthesizers live in the smashcima.synthesis module.

2.5 Models
While synthesizers do the heavy lifting, their configuration is complex and they often rely on many other
synthesizers (e.g. the music notation synthesizer relies on a glyph synthesizer). Asking every single user to
build their own synthesis pipeline from scratch would be impractical. Therefore, Smashcima introduces the
concept of models.

Models act as a ready-to-use wrappers around various synthesis pipelines, being reasonably pre-configured
out of the box. While a synthesizer is meant to be as general as possible, a model is built to be as specific as
possible. You build your own model for your specific task domain - either by adapting existing models, or by
putting together a custom synthesizer pipeline from scratch.

Models are meant to orchestrate synthesizers. They live in the smashcima.orchestration module.

2.6 Assets
The best synthetic data is partially-real data. Therefore, almost all synthesizers need some dataset, some
trained generative model, or some set of tuned parameters to work. These real-world input resources are called
assets. The Smashcima system has an assets layer responsible for their definition, download, preparation and
usage.

Assets live in the smashcima.assets module.

2.7 Other submodules
Other Smashcima submodules that have not been covered above:

2.7. OTHER SUBMODULES 7

• smashcima.geometry Contains types for working with 2D geometry (vectors, points, transforms, poly-
gons).

• smashcima.loading Classes that construct the semantic part of a scene by loading it from a music
notation format (e.g. MusicXML). They are not synthesizers, because they don’t create new data - they
just load if from some other format.

• smashcima.jupyter Helper methods for working with Smashcima from Jupyter notebooks (mostly
scene visualization code). The smashcima[jupyter] extra dependencies must be installed in order to
use this module.

Chapter 3

Models and service orchestration

When you first start using Smashcima, you will mostly interact with models (extensions of the Model abstract
class). Model (as in generative model) represents a pre-configured synthesis pipeline that produces synthetic
data modelling a specific data domain (a specific evaluation dataset / visual style / data type).

Therefore the responsibilities of models are twofold:

1. Provide a polished external interface for synthesizing the modelled data domain.
2. Set up and configure internal synthesizers and services to facilitate the data domain modelling, while

allowing for at least some re-configuration by the user (i.e. orchestrate its internal services).

Code explored in this documentation section lives in the smashcima.orchestration module.

3.1 External model interface
A model is constructed like any other python object:

import smashcima as sc

my_model = sc.BaseHandwrittenModel()

Constructor arguments depend on the model used, but the model should always provide default values for all
of them to allow for construction without any arguments provided. This is because a model should by default
already model some data domain well and customization should only be applied later if needed.

The constructed model instance is callable, so it pretends to be a data-generating function. By calling it, we
generate a new sample of data:

new_scene = my_model("input.musicxml")

The returned data sample is called a scene, because it contains much more information than just an image or
an annotation. The actual desired synthetic data must then be exported from the synthesized scene.

Arguments to the model invocation depend completely on the specific model. The BaseHandwrittenModel
shown in this example expects a MusicXML input, either as a file, or as an XML string. But you might
have models that require no arguments, or others that require some random latent vector z (e.g. Generative
Adversarial Networks), etc.

Similarly, the type of the returned scene instance is also completely controlled by the specific model used.
The BaseHandwrittenModel returns an instance of BaseHandwrittenScene, which contains representation
of the music, the synthesized pages, a renderer that will be used for rasterization, and metadata about the
chosen MUSCIMA++ writer style (MUSCIMA++ is the default source of assets).

For this specific scene type, getting the bitmap image is done like this:

9

10 CHAPTER 3. MODELS AND SERVICE ORCHESTRATION

BGRA OpenCV image

img = new_scene.render(new_scene.pages[0])

Note: You can imagine how this is very tightly linked to the data domain of handwritten scores of
music notation in the MUSCIMA++ dataset. A model designed for synthesis of isolated musical
symbols, rather than entire scores, could have a completely di�erent API: accepting a symbol
class as an argument and outputting a single symbol image as output, with possible latent space
embedding (or similar metadata).

The synthesized scene is also assigned to the model instance under the .scene field. This field is None before
the first invocation. This is for situations when you cannot store the return value from the model invocation
immediately:

an alternative way of getting the scene

(though the first one is preferred)

my_model("input.musicxml")
new_scene = my_model.scene

3.2 Service orchestration
When a model is constructed, it creates a set of synthesizers and auxiliary services, configures them, and
connects them to each other. It orchestrates a synthesis pipeline that will be used once the model gets invoked.

These include synthesizers for glyphs, line glyphs, sta�ines, page background, page layout, music notation, or
stems and beams. The auxiliary services include a random number generator and an assets repository. All of
these services depend on one another, for example, the music notation synthesizer uses the glyph synthesizer
and both use the random number generator and the assets repository.

Since the manual construction of these services would be tedious and modification of the construction process
in this case by the user would be impossible, the model instead uses a service container for the service
construction (also known as an IoC container).

3.2.1 Service container
Each model has its own service container available under the .container field.

The service container can be used to construct a dependency graph of service instances in two steps:

1. You register services into the container
2. You resolve the service you want to use

During the registration step, you tell the container what services you wish to be used. This can happen in
roughly three ways:

• You give the container an existing instance for a given service type. So, you give it a specific my_rng
value for the service random.Random. When the container is asked to resolve the service random.Random,
it will return the my_rng value.

• Or you tell the container just the service type, e.g. MuscimaPPStyleDomain. It will then figure on
its own how to construct the type when asked for its instance (by default using the argument-free
constructor, or by recursively resolving all the arguments).

• Or you tell the container what specific service type it should construct when asked about an abstract
service. For example, you tell the container to construct an instance of MyFancyGlyphSynthesizer
when the user asks for a GlyphSynthesizer.

Once all of these registrations take place, you can that resolve a service from the container
(e.g. GlyphSynthesizer) and it will recursively construct it, together with all of its dependencies
(e.g. random.Random) and give it back to you.

These are the methods you can use to register services into the container:

3.2. SERVICE ORCHESTRATION 11

import random
my_rng = random.Random(42)

register an existing instance

container.instance(random.Random, my_rng)

register a type

container.type(sc.MuscimaPPStyleDomain)

register an interface implementation

container.interface(sc.GlyphSynthesizer, MyFancyGlyphSynthesizer)

You can then ask the container to give you the glyph synthesizer instance, which will be constructed by the
container using the RNG and style domain registered above:

construct a service based on type registrations

my_glyph_synth = container.resolve(sc.GlyphSynthesizer)

assert type(my_glyph_synth) is MyFancyGlyphSynthesizer # succeeds!

3.2.1.1 Singletons

When you resolve a service twice, the container will only construct it once and then return the same instance
again:

every service is constructed only once

first = container.resolve(sc.GlyphSynthesizer)
second = container.resolve(sc.GlyphSynthesizer)

assert first is second # succeeds!

This behaviour is called singleton registration - each service always exists only in one instance, i.e. a singleton.

It means that even if random.Random is requested by twenty other services, there will only be a single instance
created and reused by all of them.

Note: This is a slight simplification from general IoC containers, say in web applications, where
the lifetime of services can be configured and there exist scoped and transient services. However,
it made little to no sense in our case of constructing synthesis pipelines.

3.2.1.2 No implicit registrations

The service container cannot resolve types that have not been explicitly registered. If that occurs, the
resolution raises an exception, and you need to provide the registration manually.

3.2.1.3 Complex service constructors

Sometimes, services may require arguments that cannot be automatically resolved by the container during
constructions (e.g. having str or int arguments).

If possible, you can register the service as an instance:

my_rng = random.Random(42)
container.instance(my_rng)

But if the service depends on other services that will yet to be constructed by the container, you can register
a factory function instead of the true service constructor:

def my_service_factory(dependecy: OtherService) -> MyService:
return MyService(dependency, some_number=42)

12 CHAPTER 3. MODELS AND SERVICE ORCHESTRATION

container.factory(MyService, my_service_factory)

3.2.2 Service construction in a model
Now that we know how a service container works, we will look at how it is utilized within a model constructor.

At the end of the Model.__init__ method, there are these three methods invoked:

self.register_services()
self.resolve_services()
self.configure_services()

These are designed for you to override, when you create your own model.

• register_services is used to register services into the container via the .instance, .type, and
.interface methods on the container.

• resolve_services is used to resolve services from the container and assign them to some model
fields, so that they can be used later during configuration and synthesis without calling the low-level
container.resolve method.

• configure_services is used to modify services after they are constructed, altering their behaviour.

This is what these methods can look like when implemented:

class MyModel(sc.Model):
def register_services(self):

super().register_services()

register a service

self.container.interface(
sc.GlyphSynthesizer,
MyFancyGlyphSynthesizer

)

def resolve_services(self):
super().resolve_services()

resolve a service

self.glyph_synthesizer: MyFancyGlyphSynthesizer \
= self.container.resolve(sc.GlyphSynthesizer)

assert type(self.glyph_synthesizer) is MyFancyGlyphSynthesizer

def configure_services(self):
super().configure_services()

configure a constructed service

self.glyph_synthesizer.level_of_fancy = 999

3.2.3 Pre-defined services
The Model base class automatically registers a number of useful services into the service container for you to
use. These are:

• random.Random instance to generate random numbers
• sc.AssetRepository instance to provide access to asset bundles
• sc.Styler instance to control style parameters for each synthesized sample

3.3. RE-CONFIGURING EXISTING MODELS 13

These instances are likely to be needed by almost all models, and they are very common synthesizer
dependencies.

The random number generator and styler are also exposed via model fields, so that you can access them inside
and outside the model:

model.rng # random.Random

model.styler # sc.Styler

3.3 Re-configuring existing models
There are two ways in which to modify model services:

1. change the way in which they are constructed (e.g. use a di�erent GlyphSynthesizer or modify its
constructor arguments)

2. change their configuration after they are constructed

The first approach is achieved by overriding container registrations at the end of the register_services
method.

For example, let’s say we want to control the seed of the random.Random instance. We could do the following:

import random
import smashcima as sc

class MyModelWithSeed(SomeBaseModel):
def __init__(self, seed: int):

store the seed before we call the super constructor

self._seed = seed

the super constructor will call the �register_services� method

super().__init__()

def register_services(self):
super().register_services()

override the �random.Random� registration

self.container.instance(
random.Random,
random.Random(self._seed)

)

This works, because registering a type into the service container for the second time replaces the old registration
with the new one. This lets us modify the dependency graph of services, what specific service types are used,
and what constructor arguments they are given.

The second way of modifying services is after their creation, by modifying their configuration fields.

For example, we could modify the line width in the NaiveStafflinesSynthesizer:

class MyModel(sc.BaseHandwrittenModel):
def configure_services(self):

super().configure_services()

get the naive stafflines synth instance

synth = self.container.resolve(sc.StafflinesSynthesizer)
assert type(synth) is NaiveStafflinesSynthesizer, \

"Just making sure no one changed the registered type we expect"

14 CHAPTER 3. MODELS AND SERVICE ORCHESTRATION

modify its configuration

synth.line_thickness = 0.1 # mm

Alternatively, for services that have been resolved in resolve_services, you can access them directly via
their field:

class MyModel(sc.BaseHandwrittenModel):
def resolve_services(self):

super().resolve_services()

remember service instance in a model field

self.fancy_glyph_synth: FancyGlyphSynthesizer \
= self.container.resolve(sc.GlyphSynthesizer)

assert type(self.fancy_glyph_synth) is FancyGlyphSynthesizer \
"Checking nobody changed the registered type that we expect"

def configure_services(self):
super().configure_services()

configure a service

self.fancy_glyph_synth.level_of_fancy = 999

But with these explicitly resolved services, you can modify them post-creation even from outside of the model:

create a model

model = MyModel()

configure a service

model.fancy_glyph_synth.level_of_fancy = 999

use the model

model(...)

Note that for most configuration changes to a model, inheriting from the model and making a custom class
derivative is necessary.

Chapter 4

Scene objects

A scene is the data model produced by synthesizers (and by models), from which we can export the target
image and annotation format.

A scene is made up of SceneObject instances, that reference each other in a graph-like structure and together
describe the contents of a synthetic sheet of music.

The purpose of a scene is to contain all information about a sheet of music and to let the user query this
information easily. It’s also designed to be easily extensible, drawing on ideas from the Resource Description
Framework (RDF) used for Open Data.

Note: The inspiration from RDF is to embrace the graph-like nature of the data model and
implement extensibility by extending the graph (say, instead of using class inheritance).

4.1 Understanding the data model by designing scene types from
scratch

Let’s learn about how SceneObjects work by going through the design process of representing music and
music notation.

Semantically, music consists of notes. A note is a sound that has some pitch and duration.

To represent pitch, we can use the Scientific pitch notation, which is just a combination of a number and a
letter. Smashcima provides the type sc.Pitch we can use.

Duration is usually not represented by absolute time (milliseconds), instead we use musical time consisting of
beats and their subdivisions. Smashcima provides the type sc.TypeDuration which represents duration in
the “note type units” of “whole”, “half”, “quarter”, etc.

Putting this together, we can define a Note scene object:

import smashcima as sc
from dataclasses import dataclass

@dataclass
class Note(sc.SceneObject):

pitch: sc.Pitch
"""Scientific pitch notation (C4, G2, ...)"""

type_duration: sc.TypeDuration
"""Note-type duration value (whole, half, quarter)"""

15

https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Open_data
https://en.wikipedia.org/wiki/Scientific_pitch_notation

16 CHAPTER 4. SCENE OBJECTS

We can create an instance of a C4 quarter note like this:

my_note = Note(
pitch=sc.Pitch.parse("4", "C"),
type_duration=sc.TypeDuration.quarter

)

Note: Using the @dataclass decorator helps us auto-generate the constructor with all the
arguments and verifying that all are provided. It is not necessary to use it, though.

Now we can build a **kern loader that reads a .krn file and constructs a list of these notes. We can now
represent the music semantically (although very simplified for the purpose of this example). We can imagine
that the loader returns a list[Note] instance which lets us hold the whole score in one variable.

We can then build a synthesizer that generates an image for each note (notehead, stem, flag). For now, we
will only consider the notehead:

import numpy as np

@dataclass
class Notehead(sc.SceneObject):

note: Note
"""The semantic note that this visual notehead represents"""

image: np.ndarray
"""The synthesized image of this notehead"""

Then we can build a renderer, that goes over all noteheads and puts them together into one bitmap for the
whole music score.

4.1. UNDERSTANDING THE DATA MODEL BY DESIGNING SCENE TYPES FROM SCRATCH 17

Here, an interesting problem arises: We hold the score in a variable as a list[Note]. How do we get to the
noteheads?

1. Currently the Notehead references a Note. This made sense so far, since we first load the notes and
only then add the noteheads. But it prevents us getting to the noteheads from notes.

2. If we invert the relationship and have the Note reference a Notehead, we have to make the Notehead
optional (being able to be None), otherwise the loader cannot load the notes. But that’s incorrect
semantically. You cannot have a note in the music score without any notehead. And relaxing this
invariant just because of a technical di�culty seems incorrect.

To solve this problem (and many more), the SceneObject base class actually tracks all references to-and-from
any SceneObject instance and remembers them internally. This allows us to query the inverse relationship
like this:

print(my_note) # I have my note, I want to get its notehead

gets the notehead of my_note via the ".note" reference

print(
Notehead.of(my_note, lambda n: n.note)

)

This way, we can pass the list[Note] to our renderer and it is able to get to all the noteheads and use them
to build the complete image.

18 CHAPTER 4. SCENE OBJECTS

4.1.1 Containers

It also allows us to focus on the semantics of the data and don’t let the technical problems get in the way.
For example, in music, notes may belong to lots of di�erent containers:

• Event Notes with the same onset.
• Chord Notes with a shared stem, same onset, and same duration.
• Beam Notes sharing a beam.
• Voice Notes in the same voice in polyphonic music.
• Slur Notes tied by the same slur.
• Tuplet Notes being part of the same tuplet.

It’s the responsibility of the container to know what notes it contains, NOT the note’s to remember what
container it belongs to. If it was the note’s responsibility, then each time we add another container, we have
to extend the Note class. That’s ugly and hinders extensibility.

At the same time, when synthesizing the music notation, the synthesizer must be able to ask a note about the
chord it belongs to, about the slur it belongs to, etc. So we need this inverse querying capability. That’s why
we inherit from the SceneObject base class, which keeps track of all these references (most importantly the
back-links).

4.1. UNDERSTANDING THE DATA MODEL BY DESIGNING SCENE TYPES FROM SCRATCH 19

4.1.2 Extensibility
Similar issue arises when we build the Smashcima library, but someone else would like to extend it. Let’s say
you want to build a notation synthesizer that respects notehead colors. You need to store the notehead color
in the scene graph somehow.

In your own project, you would be tempted to modify the Note class and just add a color field to it. But
since the Note class is part of the Smashcima library and you cannot change the library, you cannot do that.

Another option could be to create a ColoredNote class, which inherits from the Note class. But this also
poses a few problems:

1. How do you construct the ColoredNote instance, if the kern loader returns Note instances? And if you

20 CHAPTER 4. SCENE OBJECTS

just copy all the values around, how do you know it won’t break with a future update to Smashcima
that adds new fields you didn’t expect to be added?

2. What if a third person wants to also represent notehead shapes (square, slash, cross)? They would build
a ShapedNote class. But what does the inheritance chain look like now? Does the ShapedNote inherit
from ColoredNote or the other way around? And what if you two don’t even know about one another,
but a third person wants to use both of your extensions?

You can see how inheritance quickly leads to unmaintainable software in such situations.

Instead, we deal with extensibility in Smashcima by giving you the ability to extend the scene graph by adding
new nodes and attaching them to existing instances.

You can define a NoteColor scene object and link it to a note:

@dataclass
class NoteColor(sc.SceneObject):

color: str
"""The color of the notehead"""

note: Note
"""The note for which we define the color"""

You can add it to the scene graph simply by calling the constructor and throwing it away - the internal link
tracking system will keep it referenced:

NoteColor(
color="red",
note=my_note

)

You can then get the color of a note by doing an inverse query:

print(
NoteColor.of(my_note, lambda c: c.note).color

) # "red"

While inheritance is used in Smashcima in some specific cases, where this inverse querying would be unnecesarily
verbose, most of the library is designed to use composition over inheritance.

4.2. HOW SCENEOBJECT WORKS 21

For example, there is no reason why a Voice should be inside Event or why Event should be inside Voice.
These two concepts are orthogonal (literally) and should not be nested artificially. The graph design of the
scene data model allows for this.

4.2 How SceneObject works
Now that you have the motivation for the design, we can talk about how this behaviour is implemented.

The SceneObject class overrides the __setattr__ magic method, so it knows about all situations when
anyone is setting any field on the instance (obj.bar = baz). When this happens, it updates the scene object’s
inlinks and outlinks fields. These fields hold the list of references pointing away from this object, and the
list of references pointing towards this object. Each link also knows its name, which means you can have more
than one link between two object instances.

These links are only tracked between pairs of SceneObjects. If only one side is a SceneObject, then no link
is tracked. This means that scene objects can have fields containing str, int, Fraction, or any other type,
and these behave like any other pyhon code. It’s only when a scene object “contains” another scene object. In
that case you cannot really say it “contains” that object. Rather, you should think about “referencing” that
object in the scene graph.

4.2.1 Lists and None

Scene objects can also reference other scene objects optionally, e.g. having a field with type Optional[Note].
The type annotation is ignored by the scene object, but the fact of setting the reference to None deletes the
link from the scene graph.

Similarly, a scene object can reference a list of objects (e.g. a Voice references a list of Notes). When a
SceneObject is assigned a list instance, the logic goes through the list and creates a graph link to all of the
contained scene objects (while ignoring plain python types).

Note that, since all of this logic happens in __setattr__ magic method, the system does not pick up .append
or .pop or del list[4] or += [item] invocations. If you want to modify a list of scene objects, you have to
construct a new list and then set it using obj.list = new_list! In other words, you should treat the list as
being immutable.

Warning: If you do call .append on a list of scene object, you will de-synchronize the graph links
from the python instance values and this will result in unexpected behaviour when querying those
links. There is no safety logic that would detect that!

4.2.2 Memory leaks
Because scene objects track these back-references, it’s very easy to leak memory, since objects are being
referenced even when they would not be in plain python code. For example, creating the NoteColor instance
in this way makes it attached to the Note instance and it will never be garbage collected, unless the my_note
instance can also be garbage collected at the same time:

my_note_color = NoteColor(
color="red",
note=my_note

)

4.2.3 Detaching objects from scene
Because of this linking behaviour, if you want to throw away part of the scene (to replace it, or just to
completely delete it), you cannot just forget about it. You have to also break its references to the rest of the
scene.

22 CHAPTER 4. SCENE OBJECTS

For example, to destroy the NoteColor instance we created earlier, we need to set its reference to the Note to
None:

my_note_color.note = None

Only now will the my_note_color instance be garbage collected.

Because this operation makes sense for many scene objects, but the way in which to achieve it depends on
the semantics (you need to know, which reference is the reference that links this sub-scene to the rest of the
scene), you must implement this logic manually (it cannot be provided by default by the SceneObject class).

When you encapsulate this detachment logic into a method, the convention is to call this method detach():

@dataclass
class Notehead(sc.SceneObject):

note: Note
image: np.ndarray

def detach(self):
"""Break all links with the rest of the scene"""

self.note = None # type: ignore

Also note that you cannot really destroy a python class instance. Only the garbage collector can do that.
And only when no live instances point to it. Doing del my_note_color only deletes the local variable, not
the instance. You can still get hold of the instance via my_note.inlinks. That is why a dedicated detach()
method that breaks these links is necessary.

4.3 Relationship querying
Since a Notehead points to a Note, traversing this forward link is as simple as accessing a python field:

get the Note of a Notehead

my_note = my_notehead.note

The special syntax is only needed when we do the reverse querying:

get the Notehead of a Note

my_notehead: Notehead \
= Notehead.of(my_note, lambda n: n.note)

The .of method is a class-method defined on the SceneObject, meaning it will be available on every type
inheriting from the SceneObject and it always returns the specific type (e.g. Notehead).

If the scene link may not exist (and it is ok for it not to exist), you can instruct the query to return None in
such cases:

get Stem for a Notehead (which may not exist)

my_stem: Optional[Stem] \
= Stem.of_or_none(my_notehead, lambda: s: s.noteheads)

Note that the stem also points to a list of noteheads and the query also works as expected.

Lastly, you might want to ask for a list of scene objects on the other side of a link with a given name:

get children of an AffineSpace

children: list[AffineSpace] \
= AffineSpace.many_of(self, lambda s: s.parent_space)

4.4. WHEN TO USE THE SCENE CLASS 23

4.3.1 Named queries
While using these generic inverse queries with lambda expressions for link names is possible, it is a little bit
verbose and hard to read. Instead, when defining a new scene object type, you should provide a set of custom
methods that define better names for these queries.

For example, we can extend the Notehead class to define the query to get a notehead for a corresponding
Note:

class Notehead(sc.SceneObject):
...

@classmethod
def of_note(cls, note: Note):

return cls.of(note, lambda n: n.note)

Now we can get the notehead with much shorter and more readable code:

get the Notehead of a Note

my_notehead = Notehead.of_note(my_note)

Similar method could be added for stems:

class Stem(sc.SceneObject):
...

@classmethod
def of_notehead_or_none(cls, notehead: Notehead):

return cls.of_or_none(notehead, lambda s: s.notes)

When doing this, please keep the terminology consistent:

• X.of_Y to get X that should always exist for Y and should raise an exception if missing
• X.of_Y_or_none to get X that may sometimes not exist and should return None in such case
• X.of_many_Y to get a list[X], which may also be an empty list

4.4 When to use the Scene class
So far, all scene objects lived in custom variables as python instances. You don’t really need a container
(such as a Scene) when creating scene objects. However sometimes you want to return a disjoint group of
SceneObjects as a single object. For that purpose there exists the sc.Scene type.

One place where this type might be used is when defining a return type of a Model type. Models are supposed
to return scenes - the specifics of the scene depend on the model and the domain it models, but the scene
class can inherit from sc.Scene to utilize some of its pre-defined logic (like recursive scene object addition
and closure addition).

You can add scene objects into a scene like this:

scene = sc.Scene(
root_space=sc.AffineSpace()

)

scene.add(my_note)

The scene holds one AffineSpace as a root a�ne space, which may be used as a starting point when traversing
visual scene objects.

Objects added into a scene are added with all other linked objects (to and from).

We can also check that the added note also added its notehead:

24 CHAPTER 4. SCENE OBJECTS

scene.has(my_notehead) # returns True

Note: The precise responsibility of the sc.Scene class is not quite defined and it might happen
that it gets sharpen, modified, or dropped in the future. It’s partly a relict from times when scene
objects needed to be in a container.

4.5 Conclusion
This documentation page talks about SceneObjects in the abstract. But that’s just the very core of Smashcima.
You then also have a library of already pre-defined scene objects with fixed meaning that can be used to
describe a synthetic sheet of music. The rest of the scene documentation talks about those.

Chapter 5

A�ne spaces and rendering

In the previous documentation section we talked about scene objects and how they can represent arbitrary
graph-like data. We used the concepts of a Note and a Notehead to represent semantic and visual objects.
In this documentation section we will describe how the visual portion of a scene is described and rendered
(delving into how a Notehead visual object might be actually implemented in Smashcima).

5.1 A�ne space
Most 2D computer graphics software is built on the concept of a 2D a�ne space. This mathematical construct
is used in both vector and raster computer graphics software, including Inkscape, Krita, Photoshop, Illustrator,
Figma and even the SVG vector graphics data format.

In Smashcima we imagine an a�ne space as a 2D coordinate system, with an origin somewhere in space and
coordinates defined by two basis vectors X and Y sitting at the origin. The two basis vectors can have any
length and any direction, although in the majority of cases they have unit length and are orthogonal.

The a�ne space lets us put 2D real-valued coordinates on the underlying geometric space.

All visual objects that exist in Smashcima must be situated in some a�ne space (otherwise the concept of
their position (and size and orientation) cannot be defined). These objects include:

• Sprite a bitmap image
• ViewBox a rectangular viewport into the scene
• ScenePoint a 2D point
• Region a polygonal area outline in the scene

For example, when you have a Point it consists of two coordinates: X and Y. But these coordinates have no
meaning on their own. The point has to be placed into an AffineSpace, that defines what these numbers
mean in spatial terms. Therefore, a ScenePoint is nothing more than a Point combined with an AffineSpace
reference.

5.1.1 Space hierarchy
Each a�ne space can be placed into another existing a�ne space as a child. Its position within the parent
space is defined by an a�ne Transform. An a�ne transform is just a linear transform (rotation, scale, skew,
mirror) that also allows for translational movement (translation).

In other words, in the parent space, the child space’s origin can be placed anywhere and the child space can
be deformed and rotated in any way that keeps its coordinate grid as straight lines that are evenly spaced.

This nesting of a�ne spaces lets us take a subset of the scene’s visual objects (attached to the child space) and
place them anywhere within the parent space as one piece. This means that, for example, a glyph synthesizer

25

https://inkscape.org/
https://krita.org/
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/illustrator.html
https://www.figma.com/
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/transform

26 CHAPTER 5. AFFINE SPACES AND RENDERING

can operate in the glyph’s local a�ne space, placing all the glyph strokes properly and then a music notation
synthesizer can position the glyph as a whole on a sta�.

An a�ne space that has no parent (is set to None) is called the root a�ne space, and there should only be
one such space in a well-defined scene. Existence of a shared root space ensures that for any two scene objects
in any two spaces, there exists a nearest ancestor space containing both of them, which allows us to translate
between these two object’s coordinate spaces.

5.1.2 Constructing a�ne spaces
You can create a root a�ne space like this:

import smashcima as sc

root_space = sc.AffineSpace()

Then you can create a child space, with its origin placed at (10, 20) like this:

child_space = sc.AffineSpace(
parent_space=root_space,
transform=sc.Transform.translate(sc.Vector2(10, 20))

)

If no transform is proivded, then Transform.identity() is used automatically.

Alternatively, if a child space was constructed before and it has no parent (or we want to change its parent),
we can place it under the root space like this:

other_child_space.parent_space = root_space

optionally, you can modify the transform

other_child_space.transform = sc.Transform.identity()

5.1.3 Understanding transforms
The a�ne space’s transform is formally defined as a 2x3 matrix that maps from the child’s coordinate system
into the parent’s coordinate system.

In other words, with the parent-child setup from above, with the root space and a child space placed at (10,
20), if we take a point at (-1, 0) in the child space, and apply the child’s transform to it, we will get (9,
20), which is the point’s coordinates in the root space:

point_in_child_coords = sc.Point(-1, 0)
point_in_root_coords = child_space.transform.apply_to(

point_in_child_coords
)
print(point_in_root_coords) # prints (9, 20)

You can chain multiple transforms by using the .then method. For example, we could have the child space
use the same origin at (10, 20) but be rotated 180 degrees. That would put our sample point at (11, 20)
in the root coordinates:

child_space.transform = sc.Transform.rotateDegCC(180) \
.then(sc.Transform.translate(sc.Vector2(10, 20)))

now probing the same point, in a 180deg rotated child space:

point_in_child_coords = sc.Point(-1, 0)
point_in_root_coords = child_space.transform.apply_to(

point_in_child_coords

5.2. SPRITES 27

)
print(point_in_root_coords) # prints (11, 20)

The order of .then matters. We are mapping from the child space into the parent space, so we need to first
perform the rotation (in the perspective of the child space), and only after that do the translation to the
correct position in the parent space.

Remember: Transforms always map from child space coordinates to the parent space coordinates.

5.1.4 Units are millimeters
So far a�ne spaces have been defined purely mathematically without any units. While Smashcima does not
track any units and you can treat the numeric values however you like, the assumption is that one unit is one
millimeter.

This is because we are mostly dealing with scales in the range of a piece of paper, where a millimeter is an
appropriate unit (used by many 2D computer graphics software tools).

Smashcima uses physical spatial units, as opposed to pixels, because it aims to harmonize data from various
scanned source datasets, which may have been rasterized at various DPIs. Sticking to millimeters is a way to
reconcile these di�erences.

To convert between millimeters and pixels with a given DPI, you can use these utility functions:

print(sc.mm_to_px(1, dpi=300)) # 12.295081967213116

print(sc.px_to_mm(1, dpi=300)) # 0.08133333333333333

one millimeter is about 12.3 pixels under 300 DPI

5.2 Sprites
Now that we have the space itself covered with coordinate systems, we need to place some objects into it.
Because most handwritten musical symbol datasets use raster images, we built the Smashcima visual rendering
system on raster images as well.

A Sprite is a raster image, placed somewhere in an AffineSpace, with well-defined scale.

You can create a sprite like this:

import numpy as np

sprite = sc.Sprite(
space=root_space,
bitmap=np.array([...]),
bitmap_origin=sc.Point(0.5, 0.5),
dpi=300,
transform=sc.Transform.identity()

)

The space is the a�ne space that the sprite is placed into (the parent space).

The bitmap is an OpenCV BGRA image with the uint8 depth (a 3D numpy array).

The bitmap_origin is a 2D point in the 0.0 - 1.0 range in each coordinate, specifying where the bitmap
should be overlayed with the parent space’s origin. Values of 0.5 mean the center of the bitmap. So our
bitmap will be centered on the space origin.

The dpi controls the physical size of the bitmap in the parent space. At what DPI has the bitmap been
scanned.

28 CHAPTER 5. AFFINE SPACES AND RENDERING

The transform lets you apply an additional transform to the bitmap to position it arbitrarily in the parent
space. For example, you can use a rotation transform to rotate the image.

So far I described the bitmap_origin and dpi as controlling the placement within the parent space. This
is not strictly correct. There is a so-called origin space, and these arguments control the placement of the
bitmap within the origin space. The transform property then controls the placement of the origin space
within the parent space. The nesting is as follows:

[parent space]
A
| <- controlled by �transform�
|

[origin space]
A
| <- controlled by �bitmap_origin� and �dpi�
|

[pixel space]

Pixel space is the a�ne space, where (0, 0) is the top-left corner of the bitmap and (w, h) is the bottom-right
corner of the bitmap, where w and h are width and height in the number of pixels.

You can get the lower transform by calling sprite.get_pixels_to_origin_space_transform() and you
can get the upper transform simply by accessing sprite.transform. You can also get the joint transform by
calling sprite.get_pixels_to_parent_space_transform().

There is also a number of properties you can access about a sprite:

• .pixel_width and .pixel_height are size in the number of pixels
• .physical_width and .physical_height are size in millimeters
• .pixels_bbox is a helper property that returns a Rectangle in pixel space positioned at (0, 0) and

with size (pixel_width, pixel_height).

5.3 View boxes
Now that we have the coordinate spaces and bitmap images placed in them, we need a rectangular window
that will be used as the camera that looks into the scene. This camera-like object is called the ViewBox. It’s
simply a Rectangle placed in an AffineSpace:

view_box = sc.ViewBox(
space=root_space,
rectangle=sc.Rectangle(0, 0, 210, 297) # A4 paper in millimeters

)

5.4 Bitmap renderer
With the camera defined, we can now use a BitmapRenderer to traverse recursively all the a�ne spaces, find
all sprites, transform them into a blank canvas and layer them on top of each other:

renderer = sc.BitmapRenderer(
dpi=300, # rasterize the scene at this DPI

background_color=(0, 0, 0, 0) # BGRA

)
img = renderer.render(view_box)

img is a np.ndarray OpenCV BGRA uint8 image

The renderer is given only the view_box but since it links to its a�ne spaces and a�ne spaces link to their
parents, we can find the root space and iterate from there.

5.4. BITMAP RENDERER 29

The whole visual scene hangs on the root space and is not garbage collected, because of the double-linking
tracked by SceneObjects discussed in the previous documetation section.

NOTE: View boxes currently assume they are placed in the root a�ne space. It should be
supported that they can be placed in any sub-space. But they must still render the whole scene
from its root space. (Specifically, it is not view boxes that assume that, it is the BitmapRenderer
that assumes that.)

Chapter 6

Synthesizer interfaces

Synthesizer is any service that creates or manipulates a scene to produce synthetic data. Its API therefore
completely depends on the synthetic data it produces.

Whereas a model comes pre-configured and ready to use to synthesize final data, a synthesizer should have
just one narrow responsibility and allow for maximal configuration. The less work it does, the more it can be
used as a LEGO piece in a larger synthesis pipeline.

To give some structure to the resulting synthesis pipelines and to allow for intechangebility of synthesizers,
Smashcima defines a set of synthesizer interfaces, together with their implementations. This documentation
page goes over these interfaces.

6.1 Smashcima synthesizers
This is an overview list of synthesizer interfaces in the order from the most abstract to the most concrete:

• ColumnLayoutSynthesizer places musical symbols onto empty sta�ines
• PageSynthesizer produces a sheet of paper with empty sta�ines with a given layout
• StafflinesSynthesizer produces empty sta�ines
• PaperSynthesizer produces images of sheets of paper
• LineSynthesizer produces line-like music symbols (beams, stems, braces)
• GlyphSynthesizer produces musical symbols (notes, rests, accidentals)

6.2 Using synthesizers
If you look inside BaseHandwrittenModel.call() method, you can see that the model uses two synthesizers:

• PageSynthesizer
• MusicNotationSynthesizer

It loads a music score and then until there are measures remaining, it creates a new page and then fills it with
measures from the score.

Looking at it from this top level makes the BaseHandwrittenModel a pretty thin and simple class.

6.3 Extensibility
If you’re building a synthesizer for a domain not covered by these interfaces, feel free do define your own
interfaces and then implement them. Having interfaces explicitly named, documented, and assigned to

31

06_column-layout-synthesizer.md
07_glyph-synthesizer.md

32 CHAPTER 6. SYNTHESIZER INTERFACES

implementations in models lets other developers to then create alternative implementations to them. Embrace
the LEGO piece modularity of Smashcima.

Chapter 7

ColumnLayoutSynthesizer interface

This interface represents the (human) writer sitting at a blank piece of paper with sta�ines, transcribing a
piece of music onto that paper.

To create images of music symbols (glyphs), it uses as a dependency a GlyphSynthesizer (and a
LineSynthesizer). Its responsibility is to create these based on the input musical score and position them
on the piece of paper according to the rules of common western music notation.

7.1 Public API
It defines two methods: fill_page and synthesize_system.

They both fill the page with music you give to them, but at two leves of control - at the page level, or at the
system level.

The low-level system method has this signature:

def synthesize_system(
page_space: AffineSpace,
staves: List[StaffVisual],
score: Score,
start_on_measure: int

) -> System:

You give it a list of empty staves (sta�ines), whose count must match the number of staves in the music score
and also the a�ne space that contains these empty staves. Then you give it the music score and the measure
index from which it should start transcribing the music. You get back a system of music notation (system =
one line with all instruments).

The high-level method has this signature:

def fill_page(
page: Page,
score: Score,
start_on_measure: int

) -> List[System]:

You give it a page with empty sta�ines and a music score plus a measure index from which to start transcribing,
and it fills the page up with music notation.

The interface also defines these public bool flags that you can modify after the synthesizer is instantiated to
control the music notation flow:

33

34 CHAPTER 7. COLUMNLAYOUTSYNTHESIZER INTERFACE

• .stretch_out_columns Analogous to text alignment, when true it behaves like “text justify” and when
false, it behaves like “text align left”.

• .respect_line_and_page_breaks When true, systems are terminated at line and page breaks in the
music score. When false, these breaks are ignored.

• .disable_wrapping When true, music does not wrap to the next system when it starts overflowing.
When false, it does.

7.2 Implementations
• ColumnLayoutSynthesizer

Chapter 8

GlyphSynthesizer interface

Glyph synthesizer represents a service intended to produce glyphs of music notation. These are, for example,
noteheads, flags, accidentals, rests, etc.

8.1 Glyph scene object
Glyph is a visual scene object that links together other spatial scene objects that together contain information
about a music notation symbol.

There are three types of information that a glyph holds:

• appearance (as a list of Sprites)
• classification label (as a str)
• semantic segmentation mask (as a Region)

It’s a set of sprites extended with the information necessary to perform classification, object detection, and
semantic segmentation on the symbol.

All of these objects are spatial in its nature, so the glyph instance also carries its owin AffineSpace instance,
inside of which all of these objects live and which should be used to attach the glyph into the broader scene.

A glyph instance can be created like this:

import smashcima as sc

new space for the glyph to live in

space = sc.AffineSpace()

classification label for the glyph

label: str = sc.SmuflLabels.noteheadBlack.value

dummy sprite to represent the glyph, placed in the space

sprite = Sprite.rectangle(
space=space,
rectangle=sc.Rectangle(-1, -1, 2, 2)

)

create the glyph as a collection of these objects

glyph = sc.Glyph(
space=space,
region=sc.Glyph.build_region_from_sprites_alpha_channel(

35

36 CHAPTER 8. GLYPHSYNTHESIZER INTERFACE

label=label,
sprites=[sprite]

),
sprites=[sprite]

)

8.1.1 Placing a glyph into a scene
The code above creates a glyph that stands outside the greater scene. Its a�ne space is a root space (has no
parent). To place it into another space, just attach the a�ne space like this:

some affine space of the whole scene

(can be a root, can be only a staff or the paper space)

root_space = sc.AffineSpace()

attach the glyph into the scene space at (10, 20)

glyph.space.parent_space = root_space
glyph.space.transform = sc.Transform.translate(sc.Vector2(10, 20))

8.1.2 Glyph origin point
You can see that placing the glyph into a scene is performed by placing its a�ne space. More specifically, by
placing its a�ne space’s origin point.

For this reason it’s important to be consistent in where exactly this origin point is located for each glyph type
(e.g. noteheads have it as their center, whole rests have it as the position of the sta�ine).

The list of glyph labels and their proper origin points is documented in the Glyphs documentation page.

8.1.3 Semantics of visual objects
The Glyph scene object only represents a visual glyph in the scene, but it carries no semantic information.
We would like to have a Notehead that will have a link to its semantic Note and contain additional links to,
for example, the StaffVisual.

You should NOT do this via inheritance! The documentation section on scene objects details the complications
you would run into. Instead, you create a Notehead scene object and add a reference to the glyph and other
scene objects:

from dataclasses import dataclass

@dataclass
class Notehead(sc.SceneObject):

glyph: Glyph
notes: List[Note]
staff: StaffVisual

@classmethod
def of_glyph(cls, glyph: Glyph):

return cls.of(glyph, lambda n: n.glyph)

Using the reverse reference queries, you can get the notehead for a glyph (if you know that the glyph is a
notehead) and you don’t need to inherit or extend the Glyph class in any way:

notehead = Notehead.of_glyph(glyph)

glyphs.md

8.2. PUBLIC API 37

8.2 Public API
Now that you have an indea of what a Glyph is, we can look at how to use a GlyphSynthesizer service.

To just simply create a new glyph scene object, you can call the create_glyph method:

def create_glyph(label: str) -> Glyph:

You just give it the desired glyph class and it will construct a new glyph instance for you in the fashion very
similar to the code we’ve seen at the beginning of this documentation page.

The returned glyph will have its own AffineSpace, which will have no parent. You can now do with the
Glyph whatever you desire.

But since you often want to immediately place the glyph into some parent space, you can directly ask the
synthesizer to do that for you using synthesize_glyph:

def synthesize_glyph(
label: str,
parent_space: AffineSpace,
transform: Transform

) -> Glyph:

You specify the parent space and the transform that specifies the glyph’s placement within the parent space.
It also performs some additional argument checks that the previous method might not do.

Lastly, since the glyph is usually only translated, but only rarely rotated or scaled, there’s the method
synthesize_glyph_at which takes a Point instead of a full Transform:

def synthesize_glyph_at(
label: str,
parent_space: AffineSpace,
point: Point

) -> Glyph:

8.2.1 Checking supported glyph labels
Since not all glyph synthesizers support all glyph classification labels, there’s a method that you can use to
check that the synthesizer you are about to use supports all the labels you will be asking of it:

def supports_label(label: str) -> bool:

If you’re building a synthesizer that in-turn uses a GlyphSynthesizer as a dependency, make sure to call this
method before synthesizing. This helps detect compatibility issues before they have a chance to manifest in
production (for instance after 2 hours of runtime once the input data suddently contains a triple-flat accidental
but the glyph synthesizer you have been using so far does not support them).

8.3 Implementing a glyph synthesizer
To implement a custom glyph synthesizer, simply inherit from the GlyphSynthesizer abstract base class and
override the supports_label and create_glyph methods. The other two methods are already implemented
for you and they internally use the create_glyph method you provide:

class MyFancyGlyphSynthesizer(sc.GlyphSynthesizer):
def supports_label(self, label: str) -> bool:

return True # yes, we support everything!

def create_glyph(self, label: str) -> Glyph:
create a glyph from scratch

(or load it from some pickle and deep copy,

38 CHAPTER 8. GLYPHSYNTHESIZER INTERFACE

that�s also an option)

glyph = Glyph(...)

return glyph

8.4 Implementations
• smashcima.synthesis.glyph.MuscimaPPGlyphSynthesizer Synthesizes glyphs by sampling from the

MUSCIMA++ dataset.

Chapter 9

Glyphs

This documentation page lists all Glyph classification labels explicitly known about by Smashcima and defines
their origin point position.

This does not contain LineGlyphs. They are documented in a separate page.

9.1 Clefs

• smufl::cClef, smufl::cClefSmall
– Origin = vertically the defining sta�ine, horizontally the sprite center

–
• smufl::fClef, smufl::fClefSmall

– Origin = vertically the defining sta�ine, horizontally the sprite center

–
• smufl::gClef, smufl::gClefSmall

– Origin = vertically the defining sta�ine, horizontally the sprite center

39

line-glyphs.md

40 CHAPTER 9. GLYPHS

–

9.2 Time signatures
• smufl::timeSig0, smufl::timeSig1, smufl::timeSig2, smufl::timeSig3, smufl::timeSig4,

smufl::timeSig5, smufl::timeSig6, smufl::timeSig7, smufl::timeSig8, smufl::timeSig9
– Origin = center of the sprite

–
• smufl::timeSigCommon, smufl::timeSigCutCommon

– Origin = center of the sprite

–

9.3 Noteheads
• smufl::noteheadWhole, smufl::noteheadHalf

– Origin = center of the notehead

–
• smufl::noteheadBlack

– Origin = center of the notehead

–

9.4 Augmentation dot
• smufl::augmentationDot

– Origin = center of the dot
–

9.5 Flags
• smufl::flag8thDown

9.6. ACCIDENTALS 41

– Origin = tip of the corresponding stem

–
• smufl::flag8thUp

– Origin = tip of the corresponding stem

–
• smufl::flag16thDown

– Origin = tip of the corresponding stem

–
• smufl::flag16thUp

– Origin = tip of the corresponding stem

–

9.6 Accidentals

• smufl::accidentalFlat
– Origin = center of the eye

–
• smufl::accidentalNatural

– Origin = center of the eye

–
• smufl::accidentalSharp

– Origin = center of the eye

–
• smufl::accidentalDoubleSharp

– Origin = center of the cross

–

42 CHAPTER 9. GLYPHS

9.7 Articulation
• smufl::articStaccatoBelow

– Origin = center of the dot
–

9.8 Rests
• smufl::restWhole

– Origin = vertically the defining sta�ine, horizontally the sprite center

–
• smufl::restHalf

– Origin = vertically the defining sta�ine, horizontally the sprite center

–
• smufl::restQuarter

– Origin = center of the sprite

–
• smufl::rest8th

– Origin = center of the sprite

–
• smufl::rest16th

– Origin = center of the sprite

–

Chapter 10

Line glyphs

This documentation page lists all LineGlyph classification labels explicitly known about by Smashcima and
defines their start, end, and origin point positions.

Legend: - Red = start point - Green = origin point (of the glyph’s a�ne space) - Blue = end point

10.1 List of line glyphs
• smufl::stem

– Start point = bottom tip of the line
– End point = top tip of the line
– Origin = undefined, can be anywhere (default to sprite center)

–
• smashcima::beam

– Start point = left tip of the line
– End point = right tip of the line
– Origin = undefined, can be anywhere (default to sprite center)

–
• smashcima::beamHook

– Start point = left tip of the line
– End point = right tip of the line
– Origin = undefined, can be anywhere (default to sprite center)
–

• smashcima::ledgerLine
– Start point = left tip of the line
– End point = right tip of the line
– Origin = undefined, can be anywhere (default to sprite center)
–

• smufl::bracket
– Start point = top tip of the bracket
– End point = bottom tip of the bracket
– Origin = undefined, can be anywhere (default to sprite center)

43

44 CHAPTER 10. LINE GLYPHS

–
• smufl::brace

– Start point = top tip of the brace
– End point = bottom tip of the brace
– Origin = undefined, can be anywhere (default to sprite center)

–

	Introduction
	What is Smashcima, who is it for, and how is it novel?
	Development
	Financing
	How to cite
	Contact

	Design Overview
	Synthetic data
	Data model (the scene)
	Exporting (and rendering)
	Synthesis
	Models
	Assets
	Other submodules

	Models and service orchestration
	External model interface
	Service orchestration
	Service container
	Service construction in a model
	Pre-defined services

	Re-configuring existing models

	Scene objects
	Understanding the data model by designing scene types from scratch
	Containers
	Extensibility

	How SceneObject works
	Lists and None
	Memory leaks
	Detaching objects from scene

	Relationship querying
	Named queries

	When to use the Scene class
	Conclusion

	Affine spaces and rendering
	Affine space
	Space hierarchy
	Constructing affine spaces
	Understanding transforms
	Units are millimeters

	Sprites
	View boxes
	Bitmap renderer

	Synthesizer interfaces
	Smashcima synthesizers
	Using synthesizers
	Extensibility

	ColumnLayoutSynthesizer interface
	Public API
	Implementations

	GlyphSynthesizer interface
	Glyph scene object
	Placing a glyph into a scene
	Glyph origin point
	Semantics of visual objects

	Public API
	Checking supported glyph labels

	Implementing a glyph synthesizer
	Implementations

	Glyphs
	Clefs
	Time signatures
	Noteheads
	Augmentation dot
	Flags
	Accidentals
	Articulation
	Rests

	Line glyphs
	List of line glyphs

