Parsito

Version 1.0.0

Contents

1

2

Introduction
Online
2.1 Online Demo oL e
2.2 Web Service e e e e
Release
3.1 Download e e
3.1.1 Language Models L e
3.2 License. e e e
3.3 Platforms and Requirements L L
Parsito Installation
4.1 Requirements L e e e e e
4.2 Compilation e e e
4.2.1 Platforms
4.2.2 Further Details o
4.3 Other language bindings L e
4.3.1 CH o e e
4.3.2 Java ... oL e e e
4.3.3 Perl . ..o
4.3.4 Python o e
Parsito User’s Manual
5.1 Universal Dependencies 1.2 Models e
5.1.1 Download L e
5.1.2 Acknowledgements L
5.1.3 Model Description e
5.2 Running the Parser e e
5.2.1 Imput Format oL e
5.2.2 Output Format e
5.3 Running the Parsito REST Server
5.4 Training Custom Parser Models o
5.4.1 The parsing algorithm nn Lo
5.4.2 Measuring Tagger AcCuracy o v v v i i e e e e e
Parsito API Reference
6.1 Parsito Versioning oL e e
6.2 Struct string_piece e e e e e e e
6.3 Classnode o e e
6.4 Class tree o e e e e
6.4.1 treezempty()
6.4.2 tree:xclear()
6.4.3 treezaddmode()
6.4.4 tree:set-head()
6.4.5 treexunlink allmodes() oL e
6.5 Class tree_input_format L Lo
6.5.1 tree_input_format:read_block() Lo Lo oo
6.5.2 treeinput_format:set_text() Lo
6.5.3 tree_input_format:next_tree() L. e
6.5.4 tree_input_format:last_error()o Lo
6.5.5 tree_input_format:mew_input_format() Lo Lo Lo
6.5.6 tree_input_format:new_conllu_input_format()o 0oL
6.6 Class treecoutput_format oL e
6.6.1 tree_output_format:writetree()o Lo
6.6.2 tree_output_format:new_output_format() L oL L
6.6.3 tree_output_format:mew_conllu_output_format()o Lo
6.7 Class PAISET v v v v it e e e e e e e e e e e
6.7.1 parserzparse() . ..o ..o e e
6.7.2 parser:load(const char®)

6.7.3 parser:zload(istream&) Lo 15

6.8 Class version it e e e e e e e 15

6.8.1 wversion:current L L Lo e e e e e e e e e e e e e e e 15
6.9 C++ Bindings APL e 15

6.9.1 Helper Structures e 15

6.9.2 Main Classes o e e e e 16
6.10 C# Bindings e 17
6.11 Java Bindings e e e 17
6.12 Perl Bindings oo e e e 17
6.13 Python Bindings e 17
Contact 17
Acknowledgements 18
8.1 Publications L e 18
8.2 Bibtex for Referencing e 18
8.3 Permanent Identifier e e e e 18

1 Introduction

Parsito is a fast open-source dependency parser written in C++4. Parsito is based on greedy transition-based
parsing, it has very high accuracy and achieves a throughput of 30K words per second. Parsito can be trained
on any input data without feature engineering, because it utilizes artificial neural network classifier. Trained
models for all treebanks from Universal Dependencies project are available (37 treebanks as of Dec 2015).

Parsito is a free software under Mozilla Public License 2.0 and the linguistic models are free for non-commercial
use and distributed under CC BY-NC-SA license, although for some models the original data used to create
the model may impose additional licensing conditions. Parsito is versioned using Semantic Versioning.

Copyright 2015 by Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles
University in Prague, Czech Republic.

2 Online

2.1 Online Demo

Online demo is available as one of LINDAT/CLARIN services.

2.2 Web Service

Web service is also available as one of LINDAT/CLARIN services.

3 Release

3.1 Download

Parsito releases are available on GitHub, either as a pre-compiled binary package, or source code only. The
binary package contains Linux, Windows and OS X binaries, Java bindings binary, C# bindings binary, and
source code of Parsito and all language bindings). While the binary packages do not contain compiled Python
or Perl bindings, packages for those languages are available in standard package repositories, i.e. on PyPI and
CPAN.

e Latest release
e All releases, Changelog

3.1.1 Language Models

To use Parsito, a language model is needed. The language models are available from LINDAT/CLARIN
infrastructure and described further in the Parsito User’s Manual. Currently the following language models
are available:

e Universal Dependencies 1.2 Models: parsito-ud1.2-151120 (documentation)

3.2 License

Parsito is an open-source project and is freely available for non-commercial purposes. The library is distributed
under Mozilla Public License 2.0 and the associated models and data under CC BY-NC-SA, although for some
models the original data used to create the model may impose additional licensing conditions.

http://www.mozilla.org/MPL/2.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://semver.org/
http://lindat.mff.cuni.cz/services/parsito/
http://lindat.mff.cuni.cz/services/
http://lindat.mff.cuni.cz/services/parsito/api-reference.php
http://lindat.mff.cuni.cz/services/
http://github.com/ufal/parsito
http://github.com/ufal/parsito/releases/latest
http://github.com/ufal/parsito/releases
https://github.com/ufal/parsito/blob/master/CHANGES
http://www.lindat.cz
http://hdl.handle.net/11234/1-1573
http://ufal.mff.cuni.cz/parsito/users-manual#universal_dependencies_12_models
http://www.mozilla.org/MPL/2.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

If you use this tool for scientific work, please give credit to us by referencing Straka et al. 2015 and Parsito
website.

3.3 Platforms and Requirements

Parsito is available as a standalone tool and as a library for Linux/Windows/OS X. It does not require any
additional libraries. As any supervised machine learning tool, it needs trained linguistic models to perform
dependency parsing.

4 Parsito Installation

Parsito releases are available on GitHub, either as a pre-compiled binary package, or source code only. The
binary package contains Linux, Windows and OS X binaries, Java bindings binary, C# bindings binary, and
source code of Parsito and all language bindings. While the binary packages do not contain compiled Python
or Perl bindings, packages for those languages are available in standard package repositories, i.e. on PyPI and
CPAN.

To use Parsito, a language model is needed. Here is a list of available language models.

If you want to compile Parsito manually, sources are available on on GitHub, both in the pre-compiled binary
package releases and in the repository itself.

4.1 Requirements

e G++ 4.7 or newer, clang 3.2 or newer, Visual C++ 2015 or newer
e make
e SWIG 2.0.5 or newer for language bindings other than C++

4.2 Compilation

To compile Parsito, run make in the src directory.

Make targets and options:
e exe: compile the binaries (default)
server: compile the REST server
lib: compile the static library
BITS=32 or BITS=64: compile for specified 32-bit or 64-bit architecture instead of the default one
mode=RELEASE: create release build which statically links the C++ runtime and uses LTO
mode=DEBUG: create debug build
mode=PROFILE: create profile build

4.2.1 Platforms

Platform can be selected using one of the following options:

e PLATFORM=1linux, PLATFORM=1linux-gcc: gcc compiler on Linux operating system, default on Linux

e PLATFORM=linux-clang: clang compiler on Linux, must be selected manually

e PLATFORM=osx, PLATFORM=osx-clang: clang compiler on OS X, default on OS X; BITS=32+64 enables
multiarch build

e PLATFORM=win, PLATFORM=win-gcc: gcc compiler on Windows (TDM-GCC is well tested), default on
Windows

e PLATFORM=win-vs: Visual C++ 2015 compiler on Windows, must be selected manually; note that the
cl.exe compiler must be already present in PATH and corresponding BITS=32 or BITS=64 must be specified

Either POSIX shell or Windows CMD can be used as shell, it is detected automatically.

http://ufal.mff.cuni.cz/parsito
http://ufal.mff.cuni.cz/parsito
http://github.com/ufal/parsito
http://ufal.mff.cuni.cz/parsito#language_models
http://github.com/ufal/parsito
http://github.com/ufal/parsito/releases
http://github.com/ufal/parsito/releases

4.2.2 Further Details

Parsito uses C++ BuilTem system, please refer to its manual if interested in all supported options.

4.3 Other language bindings
431 C#

Binary C# bindings are available in Parsito binary packages.

To compile C# bindings manually, run make in the bindings/csharp directory, optionally with the options
descriged in Parsito Installation.

4.3.2 Java

Binary Java bindings are available in Parsito binary packages.

To compile Java bindings manually, run make in the bindings/java directory, optionally with the options
descriged in Parsito Installation. Java 6 and newer is supported.

The Java installation specified in the environment variable JAVA_HOME is used. If the environment variable does
not exist, the JAVA_HOME can be specified using
make JAVA_HOME=path_to_Java_installation

4.3.3 Perl

The Perl bindings are available as Ufal-Parsito package on CPAN.

To compile Perl bindings manually, run make in the bindings/perl directory, optionally with the options
descriged in Parsito Installation. Perl 5.10 and later is supported.

Path to the include headers of the required Perl version must be specified in the PERL_INCLUDE variable using
make PERL_INCLUDE=path_to_Perl_includes

4.3.4 Python

The Python bindings are available as ufal.parsito package on PyPIL

To compile Python bindings manually, run make in the bindings/python directory, optionally with options
descriged in Parsito Installation. Both Python 2.6+ and Python 3+ are supported.

Path to the include headers of the required Python version must be specified in the PYTHON_INCLUDE variable

using
make PYTHON_INCLUDE=path_to_Python_includes

5 Parsito User’s Manual
In a natural language text, the task of dependency parsing is to assign for each word in a sentence its dependency
head and dependency relation to the head.

Parsito is a transition-based parser, which greedily chooses transitions from the initial state (all words in a
sentence unlinked) to the final state (full dependency tree). It uses an artificial neural network classifier in

http://github.com/ufal/cpp_builtem

every state to choose the next transition to perform. Further details are described in Straka et al. 2015:
Parsing Universal Dependency Treebanks using Neural Networks and Search-Based Oracle.

Like any supervised machine learning tool, Parsito needs a trained linguistic model. This section describes the
available language models and also the commandline tools and interfaces.

5.1 Universal Dependencies 1.2 Models

Universal Dependencies 1.2 Models are distributed under the CC BY-NC-SA licence. The models are based
solely on Universal Dependencies 1.2 treebanks. The models work in Parsito version 1.0.

Universal Dependencies 1.2 Models are versioned according to the date released in the format YYMMDD, where
YY, MM and DD are two-digit representation of year, month and day, respectively. The latest version is 151120.

5.1.1 Download

The latest version 151120 of the Czech MorphoDiTa models can be downloaded from LINDAT /CLARIN repos-
itory.

5.1.2 Acknowledgements

This work has been using language resources developed and/or stored and/or distributed by the LIN-
DAT/CLARIN project of the Ministry of Education of the Czech Republic (project LM2010013).

The models were trained on Universal Dependencies 1.2 treebanks.

Publications

e (Straka et al. 2015) Straka Milan, Haji¢ Jan, Strakovd Jana and Haji¢ Jan jr. Parsing Universal De-
pendency Treebanks using Neural Networks and Search-Based Oracle. In Proceedings of the Fourteenth
International Workshop on Treebanks and Linguistic Theories ({TLT\,14}), December 2015.

5.1.3 Model Description

The parsing models use the following CoNLL-U fields during parsing:
e form
® upostag
e feats

All other fields (notably lemma and xpostag) are currently ignored.

Some language models produce non-projective trees and some projective trees, depending on which transition
system performed better on development data.

5.2 Running the Parser

To run the parser with existing parser model, use
run_parsito parser_model

The input is assumed to be in UTF-8 encoding and by default in CoNLL-U format.

Any number of files can be specified after the parser model. If an argument input_file:output_file is used,
the given input_file is processed and the result is saved to output_file. If only input_file is used, the

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://hdl.handle.net/11234/1-1548
http://hdl.handle.net/11234/1-1573
http://hdl.handle.net/11234/1-1573
http://hdl.handle.net/11234/1-1548
http://universaldependencies.github.io/docs/format.html
http://universaldependencies.github.io/docs/format.html

result is printed to standard output. If no argument is given, input is read from standard input and written to
standard output.

The full command syntax of run_parser is
run_parsito [options] model_file [file[:output_filel]...
Options: --input=conllu

--output=conllu

--version

--help

5.2.1 Input Format

The input format is specified using the ——input option. Currently supported input formats are:
e conllu (default): the CoNLL-U format

5.2.2 Output Format

The output format is specified using the ——output option. Currently supported output formats are:
e conllu (default): the CoNLL-U format

5.3 Running the Parsito REST Server

Parsito also provides REST server binary parsito_server. The binary uses MicroRestD as a REST server
implementation and provides Parsito REST API.

The full command syntax of parsito_server is
parsito_server [options] port (model_name model_file acknowledgements)+
Options: --daemon

--version

--help

The parsito_server can run either in foreground or in background (when --daemon is used). The specified
model files are loaded during start and kept in memory all the time. This behaviour might change in future to
load the models on demand.

5.4 Training Custom Parser Models

Training of Parsito models can be performed using the train_parsito binary. The first argument to
train_parsito is parsing algorithm identifier, currently the only algorithm available is nn.

5.4.1 The parsing algorithm nn

The full command syntax of train parsito nn is:

train_parsito nn [options] <training_data >parser_model

Options: --adadelta=momentum,epsilon
--adagrad=learning rate,epsilon
--batch_size=batch size
—--dropout_hidden=hidden layer dropout
—--dropout_input=input dropout
--embeddings=embedding description file
--heldout=heldout data file
--hidden_layer=hidden layer size
--hidden_layer_type=cubic|tanh (hidden layer activation function)

http://universaldependencies.github.io/docs/format.html
http://universaldependencies.github.io/docs/format.html
http://github.com/ufal/microrestd
http://lindat.mff.cuni.cz/services/parsito/api-reference.php

--initialization_range=initialization range

—--input=conllu (input format)

--iterations=number of training iterations
--11_regularization=11 regularization factor
--12_regularization=12 regularization factor
--maxnorm_regularization=max-norm regularization factor
--nodes=node selector file
--structured_interval=structured prediction interval
--sgd=learning rate[,final learning rate]
--sgd_momentum=momentum,learning rate[,final learning rate]
—--threads=number of training threads
--transition_oracle=static|static_eager|static_lazy|dynamic
--transition_system=projective|swap|link2

--version

--help

The required options of train_parsito nn are the following. Reasonable defaults are suggested in parentheses:

iterations: number of training iterations to use (10)
hidden_layer: size of the hidden layer (200)
embeddings: file containing embedding description
nodes: file containing nodes description
sgd, sgd momentum, adadelta, adagrad: which neural network training algorithm to use
(sgd=0.02,0.001)
— sgd=learning rate[,final learning rate]: use SGD with specified learning rate, using expo-
nential decay
— sgd_momentum=momentum,learning rate[,final learning ratel]: use SGD with momentum and
specified learning rate, using exponential decay
— adadelta=momentum,epsilon: use AdaDelta with specified parameters
— adagrad=learning rate,epsilon: use AdaGrad with specified parameters
transition_system: which transition system to use for parsing (language dependant, you can try all and
choose the best)
— projective: projective stack-based arc standard system with shift, left_arc and right_arc tran-
sitions
— swap: fully non-projective system which extends projective system by adding swap transition
— link2: partially non-projective system which extends projective system by adding left_arc2 and
right_arc2 transitions
transition_oracle: which transition oracle to use for the chosen transition_system:
— transition_system=projective: available oracles are static and dynamic (dynamic usually gives
better results, but training time is slower)
— transition_system=swap: available oracles are static_eager and static_lazy (static_lazy al-
most always gives better results)
— transition_system=1link2: only available oracle is static

The additional options of train_parsito nn are (again with suggested default values):

batch_size (default 1): use batches of specified size (10)
dropout_hidden (default 0): probability of dropout of hidden layer node
dropout_input (default 0): probability of dropout of input layer node
heldout: use the specified file as heldout data and report the results of the trained model on them
hidden_layer_type (default tanh): hidden layer activation function

— tanh

— cubic
initialization_range (default 0.1): maximum absolute value of initial random weights in the network
input (default conllu): input format to use
11 regularization (default 0): L1 regularization
12 regularization (default 0): L2 regularization (0.3)
maxnorm regularization (default 0): if the L2 norm of a row in the network is larger than specified
maximum, the row vector is scaled so that its norm is exactly the specified maximum
structured_interval (default 0): use search-based oracle in addition to the translation_oracle speci-
fied. This almost always gives better results, but makes training 2-3 times slower. For details, see the paper
Straka et al. 2015: Parsing Universal Dependency Treebanks using Neural Networks and Search-Based

Oracle (use 10 if you want high accuracy and do not mind slower training time)

e threads (default 1): if more than 1, train using asynchronous SGD/AdaDelta/AdaGrad with specified
number of threads. Note that asynchronous SGD/AdaDelta/AdaGrad is nondeterministic and may give
lower results than synchronous one

Input Format

The input format is specified using the ——input option. Currently supported input formats are:
e conllu (default): the CoNLL-U format

Embedding description

The embeddings used for every word are specified in the embedding description file. FEach line in the file

describes one embedding in the following format:

embedding_source dimension minimum_frequency [precomputed_embeddings [update_weights
[maximum_precomputed_embeddings]]]

e embedding source: for what data is the embedding created:
— form: word form
— lemma: word lemma
— universal_tag: universal POS tag of the word (the upostag field of the input CoNLL-U)
— tag: language-specific POS tag of the word (the xpostag field of the input CoNLL-U)
— feats: morphological features of the word (the feats field of the input CoNLL-U)
— universal _tag fields: concatenation of universal tag and feats
— deprel: the already assigned dependency relation of the word, of any
e dimension: dimension of the embedding
e minimum frequency: only create embeddings for values with the specified minimum frequency. If the
minimum frequency is more than 1, embedding for artificial OOV wvalue is created and used for unknown
values
e precomputed_embeddings (default none): use precomputed embeddings (generated by for example
word2vec) from the file specified. The precomputed embeddings file format is the one which word2vec
uses.
e update weights (default 1): should the weights of precomputed embeddings be updated further during
training:
— 0: no, keep the original precomputed embeddings
— 1: yes, update the precomputed embeddings
e maximum precomputed_embeddings (default infinity): use at most this many precomputed embeddings
(the ones at the beginning of the file are used, which is fine, because the embeddings are usually sorted
from the most frequent value)

If unsure, you can use embeddings from Straka et al. 2015: Parsing Universal Dependency Treebanks using Neu-
ral Networks and Search-Based Oracle (in the paper, embeddings for forms were precomputed using word2vec
on the training data):

universal_tag 20 1

feats 20 1

form 50 2 [precomputed_embeddings_if_any]

deprel 20 1

Nodes description

Only some nodes are considered by the classifier in every parser state. Such nodes are specified in the nodes
description file, one node per line, in the following format:
location index[,direction,...]

The location can be one of:

10

http://universaldependencies.github.io/docs/format.html

e stack: use the stack of processed node, with index 0 representing the node on top of the stack
e buffer: use the buffer of not yet processed nodes, with index O representing the first node in the buffer

Using location and index, a node is found. Optionally, its parent or child can be chosen by specifying one or
more additional directions in the following format:
e parent: choose parent of the current node
e child,index: choose a child of the current node, with the first children being 0, 1, 2, ..., and the last
children being -3, -2, -1

If unsure, you can use the set of frequently used 18 nodes (used for example by Zhang and Nivre 2011: Transition-
based dependency parsing with rich non-local features, or Chen and Manning 2014: A fast and accurate depen-
dency parser using neural networks, or Straka et al. 2015: Parsing Universal Dependency treebanks using neural
networks and search-based oracle):

stack O

stack 1

stack 2

buffer 0

buffer 1

buffer 2

stack 0,child O

stack O,child 1

stack O,child -2

stack O,child -1

stack 1,child O

stack 1,child 1

stack 1,child -2

stack 1,child -1

stack O,child O,child O

stack O,child -1,child -1

stack 1,child O,child O

stack 1,child -1,child -1

5.4.2 Measuring Tagger Accuracy

Measuring custom parser model accuracy can be performed by running:
parsito_accuracy parser_model <test_data

This binary reads input in the CoNLL-U format containing (probably user-annotated) dependency trees, and
evaluates the accuracy of the parser model on the given testing data.

6 Parsito API Reference

The Parsito API is defined in header parsito.h and resides in ufal::parsito namespace. The API allows
only using existing models, for custom model creation you have to use the train_parser binary.

The strings used in the Parsito APT are always UTF-8 encoded (except from file paths, whose encoding is system
dependent).

6.1 Parsito Versioning

Parsito is versioned using Semantic Versioning. Therefore, a version consists of three numbers ma-
jor.minor.patch, optionally followed by a hyphen and pre-release version info, with the following semantics:

e Stable versions have no pre-release version info, development have non-empty pre-release version info.
e Two versions with the same major.minor have the same API with the same behaviour, apart from bugs.
Therefore, if only patch is increased, the new version is only a bug-fix release.

11

http://universaldependencies.github.io/docs/format.html
http://semver.org/

e If two versions v and u have the same major, but minor(v) is greater than minor(u), version v contains
only additions to the APIL. In other words, the API of v is all present in v with the same behaviour (once
again apart from bugs). It is therefore safe to upgrade to a newer Parsito version with the same major.

e If two versions differ in major, their API may differ in any way.

Models created by Parsito have the same behaviour in all Parsito versions with same major, apart from obvious
bugfixes. On the other hand, models created from the same data by different major.minor Parsito versions may
have different behaviour.

6.2 Struct string_piece

struct string_piece {
const char* str;
size_t len;

string_piece();
string_piece(const char* str);

string_piece(const char* str, size_t len);
string_piece(const std::string& str);

The string piece is used for efficient string passing. The string referenced in string piece is not owned by
it, so users have to make sure the referenced string exists as long as the string piece.

6.3 Class node

class node {

public:
int id; // 0 is root, >0 is sentence node, <0 is undefined
std::string form; // form
std::string lemma; // lemma

std::string upostag; // universal part-of-speech tag
std::string xpostag; // language-specific part-of-speech tag
std::string feats; // list of morphological features

int head; // head, 0 is root, <0 is without parent
std::string deprel; // dependency relation to the head
std::string deps; // secondary dependencies

std::string misc; // miscellaneous information

std::vector<int> children;

node(int id = -1, const std::string& form = std::string())
s

The node class represents a word in the dependency tree. The node fields correspond to CoNLL-U fields, which
are documented here, with the children field representing the opposite direction of head links.

6.4 Class tree

class tree {
public:
tree();

std::vector<node> nodes;
bool empty();
void clear();

node& add_node(const std::string& form);
void set_head(int id, int head, const std::string& deprel);

12

http://universaldependencies.github.io/docs/format.html

void unlink_all_nodes();

static const std::string root_form;

};

The tree class represents dependency trees of word nodes. Note that the first node (with index 0) is always a
technical root, whose form is root_form.

Although you can manipulate with the nodes directly, the tree class offers several simple node manipulation
methods.

6.4.1 tree::empty()

bool empty();

Returns true if the tree is empty. i.e., if it contains only a technical root node.

6.4.2 tree::clear()

void clear();

Removes all tree nodes but the technical root node.

6.4.3 tree::add_node()

node& add_node(const std::string& form);

Adds a new node to the tree. The new node has first unused id, specified form and is not linked to any other
node. Reference to the new node is returned so that other fields can be also filled.

6.4.4 tree:set_head()

void set_head(int id, int head, const std: :string& deprel);

Link the node id to the node head, with the specified dependency relation. If the head is negative, the node
id is unlinked from its current head, if any.

6.4.5 tree::unlink_all_nodes()

void unlink_all_nodes();

Unlink all nodes.
6.5 Class tree_input_format

class tree_input_format {
public:
virtual “tree_input_format() {}

virtual bool read_block(std::istream& in, std::string& block) const = 0;
virtual void set_text(string_piece text, bool make_copy = false) = 0;
virtual bool next_tree(tree& t) = 0;

const std::string& last_error() const;

// Static factory methods

static tree_input_format* new_input_format(const std::string& name);
static tree_input_format* new_conllu_input_format();

13

The tree_input_format class allows loading dependency trees in various formats.

6.5.1 tree_input_format::read_block()

virtual bool read_block(std::istream& in, std::string& block) const = 0;

Load from a specified input stream reasonably small text block, which contains complete trees (i.e., the last
tree in the block is not incomplete).

Such a text block might be for example a paragraph separated by an empty line.

6.5.2 tree_input_format::set_text()

virtual void set_text(string_piece text, bool make_copy = false) = 0;

Set the text from which the dependency trees will be read.

If make_copy is false, only a reference to the given text is stored and the user has to make sure it exists until
the instance is destroyed or set_text is called again. If make_copy is true, a copy of the given text is made
and retained until the instance is destroyed or set_text is called again.

6.5.3 tree_input_format::next_tree()

virtual bool next_tree(tree& t) = 0;

Try reading another dependency tree from the text specified by set_text. Returns true if a tree was read and
false if the text ended of there was a read error.

If the format contains additional information in addition to the fields stored in the tree, it is stored in the
tree_input_format instance, and can be printed using a corresponding tree_output_format. Note that this
additional information is stored only for the last tree read.

6.5.4 tree_input_format::last_error()

const std::string& last_error() const;

Returns an error which occurred during the last next_tree. If no error occurred, the returned string is empty.
6.5.5 tree_input_format::new_input_format()

static tree_input_format* new_input_format(const std::string& name) ;

Create new tree_input_format instance, given its name. The following input formats are currently supported:

e conllu

The new instance must be deleted after use.

6.5.6 tree_input_format::new_conllu_input_format()

static tree_input_format* new_conllu_input_format();

Creates tree_input_format instance which loads dependency trees in the CoNLL-U format. The new instance
must be deleted after use.

Note that even if sentence comments and multi-word tokens are not stored in the tree instance, they can be
printed using a corresponding CoNLL-U tree_output_format instance.

6.6 Class tree_output_format

14

http://universaldependencies.github.io/docs/format.html

class tree_output_format {
public:
virtual “tree_output_format() {}

virtual void write_tree(const tree& t, std::string& output, const tree_input_formatx
additional_info = nullptr) const = 0;

// Static factory methods
static tree_output_format* new_output_format(const std::string& name) ;
static tree_output_format* new_conllu_output_format();

};

The tree_output_format class allows printing dependency trees in various formats. If the format contains
additional information in addition to the fields stored in the tree, it can be printed using a corresponding
tree_output_format.

6.6.1 tree_output_format::write_tree()

virtual void write_tree(const tree& t, std::string& output, const tree_input_format*
additional_info = nullptr) const = 0;

Prints a dependency tree to the specified string.

If the tree was read using a tree_input_format instance, this instance may store additional information, which
may be printed by the tree_output_format instance. Note that this additional information is stored only for
the tree last read with tree_input_format: :next_tree.

6.6.2 tree_output_format::new_output_format()

static tree_output_format* new_output_format(const std::string& name);

Create new tree_output_format instance, given its name. The following output formats are currently sup-
ported:
e conllu

The new instance must be deleted after use.

6.6.3 tree_output_format::new_conllu_output_format()

static tree_output_format* new_conllu_output_format();

Creates tree_output_format instance which loads dependency trees in the CoNLL-U format. The new instance
must be deleted after use.

Note that even if sentence comments and multi-word tokens are not stored in the tree instance, they can be
printed using this instance.

6.7 Class parser

class parser {
public:
virtual “parser() {};

virtual void parse(tree& t) const = 0;
enum { NO_CACHE = O, FULL_CACHE = 2147483647};

static parser* load(const char* file, unsigned cache
static parser* load(std::istream& in, unsigned cache

1000) ;
1000) ;

15

http://universaldependencies.github.io/docs/format.html

The parser class allows parsing given sentence, using an existing parser model.

6.7.1 parser::parse()

virtual void parse(tree& t) const = 0;

Parses the sentence (passed in the tree instance) and returns a dependency tree. If there are any links in the
input tree, they are discarded using tree::unlink all nodes first.

6.7.2 parser::load(const char*)

static parserx load(const char* file, unsigned cache = 1000);

Loads parser model from a specified file. Returns a pointer to a new instance of parser which must be deleted
after use.

The cache argument specifies caching level, with NO_CACHE representing no caching and FULL_CACHE maximum
caching. Although the interpretation of this argument depends on the parser used, you can consider it as a
number of most frequent forms/lemmas/tags to cache (either during model loading or during parsing).

6.7.3 parser::load(istreamé&)

static parserx load(std::istream& in, unsigned cache = 1000);

Loads parser model from the given input stream. The input stream is not closed after loading. Returns a
pointer to a new instance of [parser #parser| which must be deleted after use.

The cache argument specifies caching level, with NO_CACHE representing no caching and FULL_CACHE maximum
caching. Although the interpretation of this argument depends on the parser used, you can consider it as a
number of most frequent forms/lemmas/tags to cache (either during model loading or during parsing).

6.8 Class version
class version {
public:
unsigned major;
unsigned minor;
unsigned patch;

std::string prerelease;

static version current();

};

The version class represents Parsito version. See Parsito Versioning for more information.

6.8.1 version::current

static version current();

Returns current Parsito version.

6.9 C++ Bindings API

Bindings for other languages than C++ are created using SWIG from the C++ bindings API, which is a slightly
modified version of the native C++ API. Main changes are replacement of string piece type by native strings
and removal of methods using istream. Here is the C++ bindings API declaration:

6.9.1 Helper Structures

16

typedef vector<int> Children;

class Node {

public:
int id; // 0 is root, >0 is sentence node, <0 is undefined
string form; // form
string lemma; // lemma

string upostag; // universal part-of-speech tag
string xpostag; // language-specific part-of-speech tag

string feats; // list of morphological features

int head; // head, 0 is root, <0 is without parent
string deprel; // dependency relation to the head
string deps; // secondary dependencies

string misc; // miscellaneous information

Children children;

node(int id = -1, string form = string());
+;
typedef std::vector<node> Nodes;

6.9.2 Main Classes

class Tree {
public:
Tree();

Nodes nodes;

bool empty();

void clear();

node& addNode(string form);

void setHead(int id, int head, string deprel);
void unlinkAllNodes();

static const std::string root_form;

3

class TreeInputFormat {

public:
virtual void setText(string text);
virtual bool nextTree(tree& t) = 0;
string lastError() const;

// Static factory methods
static TreeInputFormat* newInputFormat(string name);
static TreeInputFormat* newConlluInputFormat();

};

class TreeOutputFormat {
public:

virtual string writeTree(const tree& t, const tree_input_format* additional_info =
nullptr);

// Static factory methods
static TreeOutputFormat* newOutputFormat(string name);

static TreeOutputFormat* newConlluOutputFormat();

};

class Parser {

17

public:
virtual void parse(tree& t) const;

enum { NO_CACHE = 0, FULL_CACHE = 2147483647};

static Parser* load(string file, unsigned cache = 1000);
s
class Version {
public:

unsigned major;

unsigned minor;

unsigned patch;
string prerelease;

static Version current();

};
6.10 C+# Bindings

Parsito library bindings is available in the Ufal.Parsito namespace.

The bindings is a straightforward conversion of the C++ bindings API. The bindings requires native C++ library
libparsito_csharp (called parsito_csharp on Windows).

6.11 Java Bindings

Parsito library bindings is available in the cz.cuni.mff.ufal.parsito package.

The bindings is a straightforward conversion of the C++ bindings API. Vectors do not have native Java inter-
face, see cz.cuni.mff.ufal.parsito.Children class for reference. Also, class members are accessible and
modifiable using using getField and setField wrappers.

The bindings require native C++ library libparsito_java (called parsito_java on Windows). If the library
is found in the current directory, it is used, otherwise standard library search process is used.

6.12 Perl Bindings

Parsito library bindings is available in the Ufal: :Parsito package. The classes can be imported into the current
namespace using the :all export tag.

The bindings is a straightforward conversion of the C++ bindings API. Vectors do not have native Perl interface,
see Ufal::Parsito::Children for reference. Static methods and enumerations are available only through the
module, not through object instance.

6.13 Python Bindings

Parsito library bindings is available in the ufal.parsito module.

The bindings is a straightforward conversion of the C++ bindings API. In Python 2, strings can be both unicode
and UTF-8 encoded str, and the library always produces unicode. In Python 3, strings must be only str.

7 Contact
Authors:

18

http://search.cpan.org/~{}straka/Ufal-Parsito/
http://pypi.python.org/pypi/ufal.parsito

e Milan Straka, straka@ufal.mff.cuni.cz
Parsito website.

Parsito LINDAT /CLARIN entry.

8 Acknowledgements

This work has been using language resources developed and/or stored and/or distributed by the LIN-
DAT/CLARIN project of the Ministry of Education of the Czech Republic (project LM2010013).

Acknowledgements for individual language models are listed in Parsito User’s Manual.

8.1 Publications
e (Straka et al. 2015) Straka Milan, Haji¢ Jan, Strakovd Jana and Haji¢ Jan jr. Parsing Universal De-
pendency Treebanks using Neural Networks and Search-Based Oracle. In Proceedings of the Fourteenth
International Workshop on Treebanks and Linguistic Theories ({TLT\,14}), December 2015.

8.2 Bibtex for Referencing

@InProceedings{udparsing:2015,

author = {Straka, Milan and Haji\v{c}, Jan and Strakov\’{a}, Jana and Haji\v{c} jr.,
Jan},
title = {Parsing Universal Dependency Treebanks using Neural Networks and

Search-Based Oracle},

booktitle = {Proceedings of Fourteenth International Workshop on Treebanks and Linguistic
Theories ({TLT\,14})},

month = {Decemberl},

year = {2015},

8.3 Permanent Identifier

If you prefer to reference Parsito by a permanent identifier (PID), you can use
http://hdl.handle.net/11234/1-1584.

19

http://ufal.mff.cuni.cz/milan-straka
mailto:straka@ufal.mff.cuni.cz
http://ufal.mff.cuni.cz/parsito
http://hdl.handle.net/11234/1-1584

	Introduction
	Online
	Online Demo
	Web Service

	Release
	Download
	Language Models

	License
	Platforms and Requirements

	Parsito Installation
	Requirements
	Compilation
	Platforms
	Further Details

	Other language bindings
	C#
	Java
	Perl
	Python

	Parsito User's Manual
	Universal Dependencies 1.2 Models
	Download
	Acknowledgements
	Model Description

	Running the Parser
	Input Format
	Output Format

	Running the Parsito REST Server
	Training Custom Parser Models
	The parsing algorithm nn
	Measuring Tagger Accuracy

	Parsito API Reference
	Parsito Versioning
	Struct string_piece
	Class node
	Class tree
	tree::empty()
	tree::clear()
	tree::add_node()
	tree:set_head()
	tree::unlink_all_nodes()

	Class tree_input_format
	tree_input_format::read_block()
	tree_input_format::set_text()
	tree_input_format::next_tree()
	tree_input_format::last_error()
	tree_input_format::new_input_format()
	tree_input_format::new_conllu_input_format()

	Class tree_output_format
	tree_output_format::write_tree()
	tree_output_format::new_output_format()
	tree_output_format::new_conllu_output_format()

	Class parser
	parser::parse()
	parser::load(const char*)
	parser::load(istream&)

	Class version
	version::current

	C++ Bindings API
	Helper Structures
	Main Classes

	C# Bindings
	Java Bindings
	Perl Bindings
	Python Bindings

	Contact
	Acknowledgements
	Publications
	Bibtex for Referencing
	Permanent Identifier

